Skip to main content
Log in

Backscattering of Infrared Radiation by a Model Multilayer Biological Tissue

  • BIOPHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The intensity of backscattering of near infrared laser radiation has been calculated for a multilayer biological tissue simulating the human head as a function of the distance between a source and a detector of radiation that are located on the head. The iterative solution of the Bethe–Salpeter equation has been represented as a series in scattering orders. A modification of the known Monte Carlo method for photon transport in multilayer tissues has been proposed to accelerate calculations. It has been shown that the resulting dependences of the backscattering intensity change significantly under the variation of the optical properties of the biological tissue, primarily in the case of penetration of blood to the cerebrospinal fluid layer. This can be used to develop optical methods for diagnosis of traumatic injuries of biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics (IPR Media, Moscow, 2021; SPIE, Bellingham, 2015).

  2. S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).

    Article  ADS  Google Scholar 

  3. D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, J. Neurotrauma 32, 933 (2015).

    Article  Google Scholar 

  4. A. Sabeeh and V. V. Tuchin, J. Biomed. Photon. Eng. 6, 040201 (2020).

  5. A. P. Tran, S. Yan, and Q. Fang, Neurophotonics 7, 015008 (2020).

  6. R. Francis, B. Khan, G. Alexandrakis, J. Florence, and D. MacFarlane, Biomed. Opt. Express 6, 3256 (2015).

    Article  Google Scholar 

  7. E. S. Papazoglou, M. S. Weingarten, L. Zubkov, M. Neidrauer, L. Zhu, S. Tyagi, and K. Pourrezaei, J. Biomed. Opt. 13, 044005 (2008).

  8. E. S. Papazoglou, M. T. Neidrauer, L. Zubkov, M. S. Weingarten, and K. Pourrezaei, J. Biomed. Opt. 14, 064032 (2009).

  9. E. Zinchenko, N. Navolokin, A. Shirokov, et al., Biomed. Opt. Express 10, 4003 (2019).

    Article  Google Scholar 

  10. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, Neuroimage 85, 6 (2014).

    Article  Google Scholar 

  11. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chan-ce, Phys. Med. Biol. 40, 1983 (1995).

    Article  Google Scholar 

  12. O. Pucci, V. Toronov, and K. St. Lawrence, Appl. Opt. 49, 6324 (2010).

    Article  ADS  Google Scholar 

  13. V. L. Kuzmin, Yu. A. Zhavoronkov, S. V. Ul’yanov, and A. Yu. Valkov, J. Exp. Theor. Phys. 134, 661 (2022).

    Article  ADS  Google Scholar 

  14. J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, J. Biomed. Opt. 10, 024028 (2005).

  15. V. Ntziachristos and B. Chance, Med. Phys. 28, 1115 (2001).

    Article  Google Scholar 

  16. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, Neuroimage 85, 28 (2014).

    Article  Google Scholar 

  17. H. Wabnitz, J. Rodriguez, I. Yaroslavsky, A. Yaroslavsky, and V. V. Tuchin, in Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 2nd ed. (SPIE Press, Bellingham, Washington, 2016), Vol. 1, p. 401.

    Google Scholar 

  18. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).

    Article  Google Scholar 

  19. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, Pediatr. Res. 61, 546 (2007).

    Article  Google Scholar 

  20. S. Mahmoodkalayeh, M. A. Ansari, and V. V. Tuchin, Biomed. Opt. Express 10, 2795 (2019).

    Article  Google Scholar 

  21. M. S. Cano-Velázquez, N. Davoodzadeh, D. Halaney, C. R. Jonak, D. K. Binder, J. Hernández-Cordero, and G. Aguilar, Biomed. Opt. Express 10, 3369 (2019).

    Article  Google Scholar 

  22. V. L. Kuz’min, A. Yu. Val’kov, and L. A. Zubkov, J. Exp. Theor. Phys. 128, 396 (2019).

    Article  ADS  Google Scholar 

  23. V. L. Kuzmin, V. P. Romanov, and E. V. Aksenova, Phys. Rev. E 65, 016601 (2001).

  24. T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E 48, 569 (1993).

    Article  ADS  Google Scholar 

  25. V. L. Kuzmin, M. T. Neidrauer, D. Diaz, and L. A. Zubkov, J. Biomed. Opt. 20, 105006 (2015).

  26. L. Wang, S. L. Jacques, and L. Q. Zheng, Comput. Meth. Prog. Biol. 47, 131 (1995).

    Article  Google Scholar 

  27. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, Proc. SPIE 6163, 616310 (2006).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-22-00035, https://rscf.ru/project/23-22-00035/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Zhavoronkov, S. V. Ul’yanov, A. Yu. Valkov or V. L. Kuzmin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhavoronkov, Y.A., Ul’yanov, S.V., Valkov, A.Y. et al. Backscattering of Infrared Radiation by a Model Multilayer Biological Tissue. Jetp Lett. 117, 392–399 (2023). https://doi.org/10.1134/S0021364023600180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600180

Navigation