Skip to main content

Advertisement

SpringerLink
  • JETP Letters
  • Journal Aims and Scope
τ Lepton Decays with Production of Strange Scalar Mesons \(K_{0}^{*}\)(700) and \(K_{0}^{*}\)(1430) in the Extended NJL Model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

τ → K–ηντ Decay in the Extended Nambu–Jona-Lasinio Model Including the Final-State Interaction

01 August 2021

M. K. Volkov & A. A. Pivovarov

Semileptonic Decays of Vector Mesons $$[\rho ,\omega ,\phi ] \to \pi [{{e}^{ + }}{{e}^{ - }},{{\mu }^{ + }}{{\mu }^{ - }}]$$ in a Chiral NJL Model

01 March 2021

M. K. Volkov & K. Nurlan

Scalar Leptoquark Effects in the Lepton Flavor Violating Exclusive b → s ℓ i − ℓ j + $b \to s {\ell }_{i}^{-} {\ell }_{j}^{+}$ Decays

21 November 2018

Jin-Huan Sheng, Ru-Min Wang & Ya-Dong Yang

τ → K–π0ντ Decay in the Nambu–Jona-Lasinio Model Including the Final-State Interaction of Mesons

01 June 2021

M. K. Volkov & A. A. Pivovarov

Semileptonic decay of $$B^{-}_c$$ B c - into X(3930), X(3940), X(4160)

29 May 2018

Natsumi Ikeno, Melahat Bayar & Eulogio Oset

The decays $\tau \rightarrow [\omega (782), \phi (1020)] K^{-} \nu_{\tau}$τ→[ω(782),ϕ(1020)]K-ντ in the extended NJL model

30 September 2019

M. K. Volkov, A. A. Pivovarov & K. Nurlan

A comprehensive study on the semileptonic decay of heavy flavor mesons

22 February 2021

Lu Zhang, Xian-Wei Kang, … Chao Wang

Tau decay into $$\nu _\tau $$ντ and $$a_1(1260)$$a1(1260), $$b_1(1235)$$b1(1235), and two $$K_1(1270)$$K1(1270)

25 July 2020

L. R. Dai, L. Roca & E. Oset

Study of strange beauty neutral meson decays into vector and pseudoscalar mesons

08 February 2023

B. Mohammadi & S. Khodadad

Download PDF
  • Open Access
  • Published: 01 March 2023

τ Lepton Decays with Production of Strange Scalar Mesons \(K_{0}^{*}\)(700) and \(K_{0}^{*}\)(1430) in the Extended NJL Model

  • M. K. Volkov1 &
  • K. Nurlan1,2,3 

JETP Letters (2023)Cite this article

  • 18 Accesses

  • Metrics details

The branching fractions of τ lepton decays with the production of strange scalar mesons both in the ground and first radially excited states τ– → ντ[\(K_{0}^{*}\)(700)–, \(K_{0}^{*}\)(1430)–] and τ– → ντ[\(K_{0}^{*}\)(700)–π0, \(K_{0}^{*}\)(1430)–π0, \(K_{0}^{*}\)(700)–K0, \(K_{0}^{*}\)(700)–η] are calculated in the extended U(3) × U(3) chiral quark Nambu–Jona-Lasinio model. All mesons are considered as \(q\bar {q}\) systems. The obtained results should be considered as predictions for future experiments.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

REFERENCES

  1. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); https://doi.org/10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  2. T. Eguchi, Phys. Rev. D 14, 2755 (1976); https://doi.org/10.1103/PhysRevD.14.2755

    Article  ADS  Google Scholar 

  3. D. Ebert and M. K. Volkov, Z. Phys. C 16, 205 (1983); https://doi.org/10.1007/BF01571607

    Article  ADS  Google Scholar 

  4. M. K. Volkov, Ann. Phys. 157, 282 (1984); https://doi.org/10.1016/0003-4916(84)90055-1

    Article  ADS  Google Scholar 

  5. D. Ebert and H. Reinhardt, Nucl. Phys. B 271, 188 (1986); https://doi.org/10.1016/S0550-3213(86)80009-8

    Article  ADS  Google Scholar 

  6. M. K. Volkov, Sov. J. Part. Nucl. 17, 186 (1986).

    Google Scholar 

  7. U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991); https://doi.org/10.1016/0146-6410(91)90005-9

    Article  ADS  Google Scholar 

  8. S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992); https://doi.org/10.1103/RevModPhys.64.649

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994); arXiv:hep-ph/9401310 [hep-ph].https://doi.org/10.1016/0370-1573(94)90022-1

    Article  ADS  Google Scholar 

  10. D. Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994); https://doi.org/10.1016/0146-6410(94)90043-4

    Article  ADS  Google Scholar 

  11. M. K. Volkov and V. L. Yudichev, Phys. Part. Nucl. 31, 282 (2000); arXiv:hep-ph/9906371 [hep-ph].

    Google Scholar 

  12. M. Buballa, Phys. Rept. 407, 205 (2005); doi: arXiv:hep-ph/0402234 [hep-ph].https://doi.org/10.1016/j.physrep.2004.11.004

  13. M. K. Volkov and A. E. Radzhabov, Phys.-Uspekhi 49, 551 (2006); arXiv:hep-ph/0508263 [hep-ph].https://doi.org/10.1070/PU2006v049n06ABEH005905

    Article  ADS  Google Scholar 

  14. M. K. Volkov and A. B. Arbuzov, Phys.-Uspekhi 60(7), 643 (2017); https://doi.org/10.3367/UFNe.2016.11.037964

    Article  ADS  Google Scholar 

  15. M. K. Volkov, A. A. Pivovarov, and K. Nurlan, Symmetry 14(2), 308 (2022); arXiv:2201.03951 [hep-ph].https://doi.org/10.3390/sym14020308

    Article  ADS  Google Scholar 

  16. M. K. Volkov, M. Nagy, and V. L. Yudichev, Nuovo Cim. A 112, 225 (1999); arXiv:hep-ph/9804347 [hep-ph].https://doi.org/10.1007/BF03035844

    Article  ADS  Google Scholar 

  17. G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa, and V. Riquer, Phys. Lett. B 662, 424 (2008); arXiv:0801.2288 [hep-ph].https://doi.org/10.1016/j.physletb.2008.03.036

    Article  ADS  Google Scholar 

  18. J. D. Weinstein and N. Isgur, Phys. Rev. Lett. 48, 659 (1982); https://doi.org/10.1103/PhysRevLett.48.659

    Article  ADS  Google Scholar 

  19. H. J. Lee, N. I. Kochelev, and Y. Oh, Phys. Rev. D 87(11), 117901 (2013); arXiv:1303.0610 [hep-ph].https://doi.org/10.1103/PhysRevD.87.117901

  20. N. N. Achasov, Nucl. Phys. A 675, 279C (2000); arXiv:hep-ph/9910540 [hep-ph].https://doi.org/10.1016/S0375-9474(00)00266-9

    Article  ADS  Google Scholar 

  21. H. A. Ahmed and C. W. Xiao, Phys. Rev. D 101(9), 094034 (2020); arXiv:2001.08141 [hep-ph].https://doi.org/10.1103/PhysRevD.101.094034

  22. M. K. Volkov, K. Nurlan, and A. A. Pivovarov, arXiv:2210.10557 [hep-ph].

  23. J. P. Lees, V. Poireau, V. Tisserand et al. (BaBar Collaboration), Phys. Rev. D 104(7), 072002 (2021); arXiv:2106.05157 [hep-ex].https://doi.org/10.1103/PhysRevD.104.072002

  24. M. K. Volkov and C. Weiss, Phys. Rev. D 56, 221 (1997); arXiv:hep-ph/9608347 [hep-ph].https://doi.org/10.1103/PhysRevD.56.221

    Article  ADS  Google Scholar 

  25. M. K. Volkov, Phys. Atom. Nucl. 60, 1920 (1997); arXiv:hep-ph/9612456 [hep-ph].

  26. M. Suzuki, Phys. Rev. D 47, 1252 (1993); https://doi.org/10.1103/PhysRevD.47.1252

    Article  ADS  Google Scholar 

  27. M. K. Volkov and A. A. Osipov, Sov. J. Nucl. Phys. 41, 500 (1985); JINR-E2-84-298.

  28. B. A. Li, Phys. Rev. D 55, 1436 (1997); arXiv:hep-ph/9606402 [hep-ph].https://doi.org/10.1103/PhysRevD.55.1436

    Article  ADS  Google Scholar 

  29. D. M. Li, B. Ma, and H. Yu, Eur. Phys. J. A 26, 141 (2005); arXiv:hep-ph/0509215 [hep-ph].https://doi.org/10.1140/epja/i2005-10155-6

    Article  ADS  Google Scholar 

  30. L. S. Geng, E. Oset, L. Roca, and J. A. Oller, Phys. Rev. D 75, 014017 (2007); arXiv:hep-ph/0610217 [hep-ph].https://doi.org/10.1103/PhysRevD.75.014017

  31. H. Y. Cheng, PoS Hadron 2013, 090 (2013); arXiv:1311.2370 [hep-ph].https://doi.org/10.22323/1.205.0090

  32. R. L. Workman, V. D. Burkert, V. Crede et al. (Particle Data Group), PTEP 2022, 083C01 (2022); https://doi.org/10.1093/ptep/ptac097

  33. L. von Detten, F. Noël, C. Hanhart, M. Hoferichter, and B. Kubis, Eur. Phys. J. C 81(5), 420 (2021); arXiv:2103.01966 [hep-ph].https://doi.org/10.1140/epjc/s10052-021-09169-7

    Article  ADS  Google Scholar 

  34. A. Garmash, K. Abe, H. Aihara et al. (Belle Collaboration), Phys. Rev. D 71, 092003 (2005); arXiv:hep-ex/0412066 [hep-ex].https://doi.org/10.1103/PhysRevD.71.092003

  35. R. Aaij, B. Adeva, M. Adinolfi et al. (LHCb Collaboration), Phys. Rev. D 90(7), 072003 (2014); arXiv:1407.7712 [hep-ex].https://doi.org/10.1103/PhysRevD.90.072003

  36. R. Aaij, C. A. Beteta, B. Adeva et al. (LHCb Collaboration), Phys. Rev. Lett. 123(23), 231802 (2019); arXiv:1905.09244 [hep-ex].https://doi.org/10.1103/PhysRevLett.123.231802

  37. A. E. Bondar, V. V. Anashin, V. M. Aulchenko et al. (Charm-Tau Factory Collaboration), Phys. Atom. Nucl. 76, 1072 (2013); https://doi.org/10.1134/S1063778813090032

    Article  ADS  Google Scholar 

  38. Q. Luo and D. Xu, https://10.18429/JACoW-IPAC2018-MOPML013

  39. E. Kou, P. Urquijo, W. Altmannshofer et al. (Belle-II Collaboration), PTEP 2019(12), 123C01 (2019);

  40. Erratum: PTEP 2020(2), 029201 (2020); arXiv:1808.10567 [hep-ex].https://doi.org/10.1093/ptep/ptz106

Download references

Author information

Authors and Affiliations

  1. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Russia

    M. K. Volkov & K. Nurlan

  2. The Institute of Nuclear Physics, 050032, Almaty, Kazakhstan

    K. Nurlan

  3. L.N. Gumilyov Eurasian National University, 010008, Astana, Kazakhstan

    K. Nurlan

Authors
  1. M. K. Volkov
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. Nurlan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to M. K. Volkov or K. Nurlan.

Rights and permissions

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volkov, M.K., Nurlan, K. τ Lepton Decays with Production of Strange Scalar Mesons \(K_{0}^{*}\)(700) and \(K_{0}^{*}\)(1430) in the Extended NJL Model. Jetp Lett. (2023). https://doi.org/10.1134/S0021364023600106

Download citation

  • Received: 26 December 2022

  • Revised: 17 January 2023

  • Accepted: 17 January 2023

  • Published: 01 March 2023

  • DOI: https://doi.org/10.1134/S0021364023600106

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.