Skip to main content
Log in

Hexagonal Diamond: Theoretical Study of Methods of Fabrication and Experimental Identification

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Methods for the formation of hexagonal (2H) diamond from diamond polytypes under various types of deformation of the structure have been studied using density functional theory in the generalized gradient approximation. It has been established that the most appropriate method for the formation the structure of the 2H diamond polytype is the application of shear stresses >102.9 GPa along the [211] direction to the (111) planes of cubic diamond when pressures along the [111], [110], and [211] axes reach 21.6, 21.7, and 69.9 GPa, respectively. Raman and X-ray absorption spectra have also been calculated for various diamond polytypes. The analysis of calculated spectra shows that hexagonal diamond can be unambiguously identified if other diamond polytypes with nonzero hexagonality are absent in the system under study. In addition, Raman spectroscopy data and characteristic electron energy losses have been analyzed in order to determine the presence of 2H diamond in artificial or natural carbon compounds. It has been established that hexagonal diamond in the pure form has not yet been obtained and the structure of synthesized compounds is close to the structure of polytypes with a long lattice period or with a random packing of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications (Noyes, Park Ridge, 1993).

    Google Scholar 

  2. J. Vejpravova, Nanomaterials 11, 2469 (2021).

    Article  Google Scholar 

  3. P. B. Sorokin and L. A. Chernozatonskii, Phys. Usp. 56, 105 (2013).

    Article  ADS  Google Scholar 

  4. S. W. Harun, Handbook of Graphene, Technology and Innovations (Wiley, Hoboken, 2019), Vol. 8.

    Google Scholar 

  5. E. A. Belenkov and V. A. Greshnyakov, New Carbon Mater. 28, 273 (2013).

    Article  Google Scholar 

  6. X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  7. V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky, and V. Reshetov, Diamond Relat. Mater. 7, 427 (1998).

    Article  ADS  Google Scholar 

  8. A. G. Kvashnin and P. B. Sorokin, J. Phys. Chem. Lett. 5, 541 (2014).

    Article  Google Scholar 

  9. Yu. A. Kvashnina, A. G. Kvashnin, M. Yu. Popov, B. A. Kulnitskiy, I. A. Perezhogin, E. V. Tyukalova, L. A. Chernozatonskii, P. B. Sorokin, and V. D. Blank, J. Phys. Chem. Lett. 6, 2147 (2015).

    Article  Google Scholar 

  10. A. G. Lyapin, Y. Katayama, and V. V. Brazhkin, J. Appl. Phys. 126, 065102 (2019).

  11. Z. Pan, H. Sun, Y. Zhang, and C. Chen, Phys. Rev. Lett. 102, 055503 (2009).

  12. W. Zheng, Qi-J. Liu, Z.-T. Liu, and Z.-Q. Zhang, Mater. Sci. Semicond. Process. 146, 106692 (2022).

  13. V. V. Brazhkin, Phys. Usp. 63, 523 (2020).

    Article  ADS  Google Scholar 

  14. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 124, 265 (2017).

    Article  ADS  Google Scholar 

  15. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 58, 2145 (2016).

    Article  ADS  Google Scholar 

  16. A. P. Jones, P. F. McMillan, C. G. Salzmann, M. Alvaro, F. Nestola, M. Prencipe, D. Dobson, R. Hazael, and M. Moore, Lithos 265, 214 (2016).

    Article  ADS  Google Scholar 

  17. Y. Yue, Y. Gao, W. Hu, et al., Nature (London, U.K.) 582, 370 (2020).

    Article  ADS  Google Scholar 

  18. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).

    Article  ADS  Google Scholar 

  19. V. A. Greshnyakov, E. A. Belenkov, and M. M. Brzhezinskaya, Phys. Status Solidi B 256, 1800575 (2019).

  20. H. He, T. Sekine, and T. Kobayashi, Appl. Phys. Lett. 81, 610 (2002).

    Article  ADS  Google Scholar 

  21. P. Giannozzi, O. Andreussi, T. Brumme, et al., J. Phys.: Condens. Matter 29, 465901 (2017).

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  23. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  24. O. Bunau and M. Calandra, Phys. Rev. B 87, 205105 (2013).

  25. M. Lazzeri and F. Mauri, Phys. Rev. Lett. 90, 036401 (2003).

  26. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 133, 744 (2021).

    Article  ADS  Google Scholar 

  27. V. A. Greshnyakov and E. A. Belenkov, Lett. Mater. 11, 479 (2021).

    Article  Google Scholar 

  28. F. Occelli, P. Loubeyre, and R. Letoullec, Nat. Mater. 2, 151 (2003).

    Article  ADS  Google Scholar 

  29. Y. Umeno, Y. Shiihara, and N. Yoshikawa, J. Phys.: Condens. Matter 23, 385401 (2011).

  30. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 59, 1926 (2017).

    Article  ADS  Google Scholar 

  31. B. Wen, J. Zhao, M. J. Bucknum, P. Yao, and T. Li, Diamond Relat. Mater. 17, 356 (2008).

    Article  ADS  Google Scholar 

  32. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 61, 288 (2019).

    Article  ADS  Google Scholar 

  33. F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, and A. F. Goncharov, Carbon 34, 141 (1996).

    Article  Google Scholar 

  34. R. H. Baughman, A. Y. Liu, C. Cui, and P. J. Schields, Synth. Met. 86, 2371 (1997).

    Article  Google Scholar 

  35. T. B. Shiell, D. G. McCulloch, J. E. Bradby, J. E. Bradby, B. Haberl, R. Boehler, and D. R. McKenzie, Sci. Rep. 6, 37232 (2016).

    Article  ADS  Google Scholar 

  36. M. Nishitani-Gamo, I. Sakaguchi, K. Ping Loh, H. Kanda, and T. Ando, Appl. Phys. Lett. 73, 76537 (1998).

    Article  Google Scholar 

  37. V. N. Khabashesku, Z. Gu, B. Brinson, J. L. Zimmerman, J. L. Margrave, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, J. Phys. Chem. B 106, 11155 (2002).

    Article  Google Scholar 

  38. A. Misra, P. K. Tyagi, B. S. Yadav, P. Rai, D. S. Misra, V. Pancholi, and I. D. Samajdar, Appl. Phys. Lett. 89, 071911 (2006).

  39. Z. Chen, K. Magniez, M. Duchemin, N. Stanford, A. T. Ambujakshan, A. Taylor, C. S. Wong, Y. Zhao, and X. J. Dai, Plasma Chem. Plasma Process. 38, 75 (2018).

    Article  Google Scholar 

  40. Y. Sato, M. Bugnet, M. Terauchi, G. A. Botton, and A. Yoshiasa, Diamond Relat. Mater. 64, 190 (2016).

    Article  ADS  Google Scholar 

  41. Y. El Mendili, B. Orberger, D. Chateigner, J.-F. Bardeau, S. Gascoin, and S. Petit, Chem. Phys. 559, 111541 (2022).

  42. V. A. Saleev and A. V. Shipilova, Comput. Opt. 41, 476 (2017).

    Article  ADS  Google Scholar 

  43. S. V. Goryainov, A. Yu. Likhacheva, and N. N. Ovsyuk, J. Exp. Theor. Phys. 127, 20 (2018).

    Article  ADS  Google Scholar 

  44. V. N. Denisov, B. N. Mavrin, N. R. Serebryanaya, G. A. Dubitsky, V. V. Aksenenkov, A. N. Kirichenko, N. V. Kuzmin, B. A. Kulnitskiy, I. A. Perezhogin, and V. D. Blank, Diamond Relat. Mater. 20, 951 (2011).

    Article  ADS  Google Scholar 

  45. M. V. Kondrin, Y. B. Lebed, and V. V. Brazhkin, Diamond Relat. Mater. 110, 108114 (2020).

  46. Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, Ho-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).

  47. Y. Bai, X. Zhao, T. Li, Z. Lv, S. Lv, H. Han, Y. Yin, and H. Wang, Carbon 78, 70 (2014).

    Article  Google Scholar 

  48. V. A. Greshnyakov and E. A. Belenkov, Inorg. Mater. 54, 111 (2018).

    Article  Google Scholar 

  49. E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Phys. Solid State 54, 1715 (2012).

    Article  ADS  Google Scholar 

  50. P. J. Pauzauskie, J. C. Crowhurst, M. A. Worsley, T. A. Laurence, A. L. D. Kilcoyne, Y. Wang, T. M. Willey, K. S. Visbeck, S. C. Fakra, W. J. Evans, J. M. Zaug, and J. H. Satcher, Jr., Proc. Natl. Acad. Sci. U. S. A. 108, 8550 (2011).

    Article  ADS  Google Scholar 

  51. P. Nemeth, L. A. J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, and P. R. Buseck, Nat. Commun. 5, 5447 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Greshnyakov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greshnyakov, V.A. Hexagonal Diamond: Theoretical Study of Methods of Fabrication and Experimental Identification. Jetp Lett. 117, 306–312 (2023). https://doi.org/10.1134/S0021364023600064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600064

Navigation