Skip to main content
Log in

Effects of Quantum Recoil Forces in Resistive Switching in Memristors

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Memristive devices, whose resistance can be controlled by applying a voltage and further retained, are attractive as possible circuit elements for neuromorphic computing. This new type of devices poses a number of both technological and theoretical challenges. Even the physics of the key process of resistive switching, usually associated with formation or breakage of conductive filaments in the memristor, is not completely understood yet. This work proposes a new resistive switching mechanism, which should be important in the thin-filament regime and take place due to the back reaction, or recoil, of quantum charge carriers, independent of the conventional electrostatically-driven ion migration. Since thinnest conductive filaments are in question, which are only several atoms thick and allow for a quasi-ballistic, quantized conductance, we use a mean-field theory and the framework of nonequilibrium Green’s functions to discuss the electron recoil effect for a quantum current through a nanofilament on its geometry and compare it with the transmission probability of charge carriers. Namely, we first study an analytically tractable toy model of a 1D atomic chain, to qualitatively demonstrate the importance of the charge-carrier recoil, and further proceed with a realistic molecular-dynamics simulation of the recoil-driven ion migration along a copper filament and the resulting resistive switching. The results obtained are expected to add to the understanding of resistive switching mechanisms at the nanoscale and to help downscale high-retention memristive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).

    Article  Google Scholar 

  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London, U.K.) 453, 80 (2008).

    Article  ADS  Google Scholar 

  3. D. Ielmini and H.-S. P. Wong, IEEE Nanotechnol. Mag. 1, 333 (2018).

    Google Scholar 

  4. Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia, and J. J. Yang, Nat. Rev. Mater. 5, 173 (2020).

    Article  ADS  Google Scholar 

  5. J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).

  6. W. Wang, M. Wang, E. Ambrosi, A. Bricalli, M. Laudato, Zh. Sun, X. Chen, and D. Ielmini, Nat. Commun. 10, 81 (2019).

    Article  ADS  Google Scholar 

  7. W. Xue, S. Gao, J. Shang, X. Yi, G. Liu, and R.-W. Li, Adv. Electron. Mater. 5, 1800854 (2019).

  8. S. Gao, C. Chen, Z. Zhai, H. Y. Liu, Y. S. Lin, S. Z. Li, S. H. Lu, G. Y. Wang, C. Song, F. Zeng, and F. Pan, Appl. Phys. Lett. 105, 063504 (2014).

  9. A. A. Minnekhanov, B. S. Shvetsov, M. M. Martyshov, K. E. Nikiruy, E. V. Kukueva, M. Yu. Presnyakov, P. A. Forsh, V. V. Rylkov, V. V. Erokhin, V. A. Demin, and A. V. Emelyanov, Org. Electron. 74, 89 (2019).

    Article  Google Scholar 

  10. B. S. Shvetsov, A. A. Minnekhanov, A. A. Nesmelov, M. N. Martyshov, V. V. Rylkov, V. A. Demin, and A. V. Emelyanov, Semiconductors 54, 1103 (2020).

    Article  ADS  Google Scholar 

  11. O. G. Kharlanov, B. S. Shvetsov, V. V. Rylkov, and A. A. Minnekhanov, Phys. Rev. Appl. 17, 054035 (2022).

  12. D. Dundas, E. J. McEniry, and T. N. Todorov, Nat. Nanotechnol. 4, 99 (2009).

    Article  ADS  Google Scholar 

  13. T. N. Todorov, D. Dundas, and E. J. McEniry, Phys. Rev. B 81, 075416 (2010).

  14. R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

    Article  Google Scholar 

  15. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990).

    Article  ADS  Google Scholar 

  16. K. H. Bevan, H. Guo, E. D. Williams, and Zh. Zhang, Phys. Rev. B 81, 235416 (2010).

  17. V.-N. Do, Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 033001 (2014).

  18. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C 4, 916 (1971).

    Article  ADS  Google Scholar 

  19. R. E. Peierls, Quantum Theory of Solids (Oxford Univ. Press, London, 1955).

    MATH  Google Scholar 

  20. J. Friedel, Nuovo Cim. 7, 287 (1958).

    Article  ADS  Google Scholar 

  21. H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B 83, 134118 (2011).

  22. I. Rungger and S. Sanvito, Phys. Rev. B 78, 035407 (2008).

  23. J. B. Bostwick and P. H. Steen, Ann. Rev. Fluid Mech. 47, 539 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Anton Minnekhanov for fruitful discussions.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-07-00696). This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Megascience Facilities at National Research Center Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Kharlanov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlanov, O.G. Effects of Quantum Recoil Forces in Resistive Switching in Memristors. Jetp Lett. 117, 384–391 (2023). https://doi.org/10.1134/S0021364022603323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022603323

Navigation