Skip to main content
Log in

Upper Limits on the Isotropic Diffuse Flux of Cosmic PeV Photons from Carpet-2 Observations

  • ASTROPHYSICS AND COSMOLOGY
  • Published:
JETP Letters Aims and scope Submit manuscript

Isotropic diffuse gamma-ray flux in the PeV energy band is an important tool for multimessenger tests of models of the origin of high-energy astrophysical neutrinos and for new-physics searches. So far, this flux has not yet been observed. Carpet-2 is an air-shower experiment capable of detecting astrophysical gamma rays with energies above 0.1 PeV. Here we report the upper limits on the isotropic gamma-ray flux from Carpet-2 data obtained in 1999–2011 and 2018–2022. These results, obtained with the new statistical method based on the shape of the muon-number distribution, summarize Carpet-2 observations as the upgraded installation, Carpet-3, starts its operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. We have tested explicitly that reasonable variations of the bin size do not affect the result.

REFERENCES

  1. M. G. Aartsen, R. Abbasi, Y. Abdou, et al. (IceCube Collab.), Science (Washington, DC, U. S.) 342, 1242856 (2013).

  2. A. Nikishov, Sov. Phys. JETP 14, 393 (1962).

    Google Scholar 

  3. M. Ahlers and K. Murase, Phys. Rev. D 90, 023010 (2014).

  4. J. C. Joshi, W. Winter, and N. Gupta, Mon. Not. R. Astron. Soc. 439, 3414 (2014);

    Article  ADS  Google Scholar 

  5. Mon. Not. R. Astron. Soc. 446, 892 (2014).

  6. O. E. Kalashev and S. V. Troitsky, JETP Lett. 100, 761 (2014).

    Article  ADS  Google Scholar 

  7. A. Neronov, M. Kachelrieß, and D. V. Semikoz, Phys. Rev. D 98, 023004 (2018).

  8. M. Bouyahiaoui, M. Kachelrieß, and D. V. Semikoz, Phys. Rev. D 101, 123023 (2020).

  9. A. M. Taylor, S. Gabici, and F. Aharonian, Phys. Rev. D 89, 103003 (2014).

  10. O. Kalashev and S. Troitsky, Phys. Rev. D 94, 063013 (2016).

  11. S. Gabici, S. Recchia, F. Aharonian, and V. Niro, Astrophys. J. 914, 135 (2021).

    Article  ADS  Google Scholar 

  12. O. Kalashev, N. Martynenko, and S. Troitsky, arXiv: 2207.12458 (2022).

  13. S. V. Troitsky, JETP Lett. 105, 55 (2017).

    Article  ADS  Google Scholar 

  14. H. Martínez-Huerta, R. G. Lang, and V. de Souza, Symmetry 12, 1232 (2020).

    Article  ADS  Google Scholar 

  15. H. Vankov and T. Stanev, Phys. Lett. B 538, 251 (2002).

    Article  ADS  Google Scholar 

  16. G. Rubtsov, P. Satunin, and S. Sibiryakov, Phys. Rev. D 86, 085012 (2012).

  17. M. Amenomori, Y. Bao, X. Biand, et al., Phys. Rev. Lett. 126, 141101 (2021).

  18. D. D. Dzhappuev, V. V. Alekseenko, V. I. Volchenko, et al., Bull. Russ. Acad. Sci.: Phys. 71, 525 (2007).

    Article  Google Scholar 

  19. J. Szabelski, Nucl. Phys. B Proc. Suppl. 196, 371 (2009); arXiv: 0902.0252.

    Article  ADS  Google Scholar 

  20. D. D. Dzhappuev, V. B. Petkov, A. U. Kudzhaev, et al., in Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts, Ed. by V. V. Sokolov, V. V. Vlasyuk, and V. B. Petkov (Sneg, Pyatigorsk, 2016), p. 30; arXiv: 1511.09397 (2016).

  21. S. Troitsky, D. Dzhappuev, and Y. Zhezher, in Proceedings of the 36th International Cosmic Ray Conference ICRC'2019, Madison, USA (2019), p. 808; arXiv: 1907.10893.

  22. D. D. Dzhappuev, I. M. Dzaparova, E. A. Gorbacheva, et al., EPJ Web of Conf. 207, 03004 (2019).

  23. D. D. Dzhappuev, Y. Afashokov, I. Dzaparova, et al., Astrophys. J. Lett. 916, L22 (2021).

    Article  ADS  Google Scholar 

  24. D. Dzhappuev, Y. Afashokov, I. Dzaparova, et al., Astron. Telegram 15669, 2 (2022).

    ADS  Google Scholar 

  25. S. V. Troitsky, JETP Lett. 116, 767 (2022).

    Article  ADS  Google Scholar 

  26. G. Galanti, M. Roncadelli, and F. Tavecchio, arXiv: 2211.06935 (2022).

  27. D. D. Dzhappuev, Y. Z. Afashokov, I. M. Dzaparova, et al., JETP Lett. 112, 753 (2020).

    Article  ADS  Google Scholar 

  28. D. D. Dzhappuev, I. M. Dzaparova, E. A. Gorbacheva, et al., JETP Lett. 109, 226 (2019).

    Article  ADS  Google Scholar 

  29. G. Schatz, F. Fessler, T. Antoni, et al., in Proceedings of the 28th International Cosmic Ray Conference (Universal Academy Press, Tsukuba, 2003), p. 9.

  30. W. D. Apel, J. Arteaga-Velázquez, K. Bekk, et al. (KASKADE Grande Collab.), Astrophys. J. 848, 1 (2017).

    Article  ADS  Google Scholar 

  31. Y. A. Fomin, N. N. Kalmykov, I. S. Karpikov, G. V. Kulikov, M. Y. Kuznetsov, G. I. Rubtsov, V. P. Sulakov, and S. V. Troitsky, Phys. Rev. D 95, 123011 (2017).

  32. M. C. Chantell, C. Covault, J. Cronin, et al. (CASA-MIA Collab.), Phys. Rev. Lett. 79, 1805 (1997).

    Article  ADS  Google Scholar 

  33. M. Aglietta, B. Alessandro, P. Antonioli, et al. (EAS‑TOP Collab.), Astropart. Phys. 6, 71 (1996).

    Article  ADS  Google Scholar 

  34. A. Albert, R. Alfaro, C. Alvarez, et al. (HAWC Collab.), arXiv: 2209.08106 (2022).

  35. A. Neronov, D. Semikoz, and I. Vovk, Astron. Astrophys. 653, L4 (2021).

    Article  ADS  Google Scholar 

  36. M. Minamino, S. Dugad, T. Fujii, et al. (GRAPES-3 Collab.), in Proceedings of the 31st International Cosmic Ray Conference, Łódź (Univ. Łódź, Łódź, 2009), p. 1089.

  37. A. V. Glushkov, D. S. Gorbunov, I. T. Makarov, M. I. Pravdin, G. I. Rubtsov, I. E. Sleptsov, and S. V. Troitsky, JETP Lett. 85, 131 (2007).

    Article  ADS  Google Scholar 

  38. M. Amelchakov, N. Barbashina, A. Bogdanov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1026, 166184 (2022).

  39. A. Addazi, X. Bai, K. Belotsky, et al. (LHAASO Collab.), Chin. Phys. C 46, 035001 (2022).

  40. P. Abreu, A. Albert, R. Alfaro, et al., arXiv: 1907.07737 (2019).

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, contract no. 075-15-2020-778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Troitsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhappuev, D.D., Afashokov, Y.Z., Dzaparova, I.M. et al. Upper Limits on the Isotropic Diffuse Flux of Cosmic PeV Photons from Carpet-2 Observations. Jetp Lett. 117, 184–188 (2023). https://doi.org/10.1134/S0021364022603244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022603244

Navigation