Skip to main content
Log in

Scanning of Electronic States in a Quantum Point Contact Using Asymmetrically Biased Side Gates

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The conductance of a trench-type quantum point contact (QPC) with side gates has been experimentally investigated over a wide range of gate voltages. The performed measurements, in which the asymmetric gate bias modifies the confinement potential while the sum of the gate voltages populates it with electrons, made it possible to scan the electron states in the QPC. Analysis of the experimental data revealed an unusual four-well shape of the confining potential in a single QPC. The rather complicated transconductance plot measured can be divided into its component parts—the contributions of the four separate conducting channels. Different electron states observed in the experiment have been associated with a certain number of filled one-dimensional (1D) subbands belonging to different channels. A whole network of degeneration events of 1D subbands in parallel channels has been found. Almost every such event was experimentally manifested by anticrossings observed both for small and large numbers of filled 1D subbands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  2. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988).

    Article  ADS  Google Scholar 

  3. P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock, M. Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert, M. Muhammad, and M. Johnson, Nat. Nanotechnol. 4, 759 (2009).

    Article  ADS  Google Scholar 

  4. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. A. Shevyrin, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 112, 082102 (2018).

  5. T. Masuda, K. Sekine, K. Nagase, K. S. Wickramasinghe, T. D. Mishima, M. B. Santos, and Y. Hirayama, Appl. Phys. Lett. 112, 192103 (2018).

  6. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 115, 152101 (2019).

  7. I. M. Castleton, A. G. Davies, A. R. Hamilton, J. E. F. Frost, M. Y. Simmons, D. A. Ritchie, and M. Pepper, Phys. B (Amsterdam, Neth.) 249–251, 157 (1998).

  8. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, A. G. Davies, and M. Pepper, Phys. Rev. B 59, 12252 (1999).

    Article  ADS  Google Scholar 

  9. P. J. Simpson, D. R. Mace, C. J. B. Ford, I. Zailer, M. Pepper, D. A. Ritchie, J. E. F. Frost, M. P. Grimshaw, and G. A. C. Jones, Appl. Phys. Lett. 63, 3191 (1993).

    Article  ADS  Google Scholar 

  10. W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 102, 056804 (2009).

  11. L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. B 80, 041306 (2009).

  12. W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. E (Amsterdam, Neth.) 42, 1118 (2010).

  13. L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. E (Amsterdam, Neth.) 42, 1114 (2010).

  14. S. Kumar, K. J. Thomas, L. W. Smith, M. Pepper, G. L. Creeth, I. Farrer, D. Ritchie, G. Jones, and J. Griffiths, Phys. Rev. B 90, 201304(R) (2014).

  15. S. Kumar, M. Pepper, H. Montagu, D. Ritchie, I. Farrer, J. Griffiths, and G. Jones, Appl. Phys. Lett. 118, 124002 (2021).

  16. A. V. Chaplik, JETP Lett. 31, 252 (1980).

    ADS  Google Scholar 

  17. J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21, 023203 (2009).

  18. J. S. Meyer, K. A. Matveev, and A. I. Larkin, Phys. Rev. Lett. 98, 126404 (2007).

  19. A. C. Mehta, C. J. Umrigar, J. S. Meyer, and H. U. Baranger, Phys. Rev. Lett. 110, 246802 (2013).

  20. D. I. Sarypov, D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, and A. K. Bakarov, JETP Lett. 116, 360 (2022).

    Article  ADS  Google Scholar 

  21. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Semiconductors 54, 1605 (2020).

    Article  ADS  Google Scholar 

  22. E. T. Owen and C. H. W. Barnes, Phys. Rev. Appl. 6, 054007 (2016).

  23. I. I. Yakimenko and I. P. Yakimenko, J. Phys.: Condens. Matter 34, 105302 (2022).

  24. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 118, 012104 (2021).

  25. K.-J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616 (1996).

    Article  ADS  Google Scholar 

  26. A. G. Pogosov, M. V. Budantsev, E. Yu. Zhdanov, D. A. Pokhabov, A. K. Bakarov, and A. I. Toropov, Appl. Phys. Lett. 100, 181902 (2012).

  27. A. G. Pogosov, A. A. Shevyrin, D. A. Pokhabov, E. Yu. Zhdanov, and S. Kumar, J. Phys: Condens. Matter 34, 263001 (2022).

  28. L. I. Glazman, G. B. Lesovik, D. E. Khmel’nitskii, and R. I. Shekhter, JETP Lett. 48, 238 (1988).

    ADS  Google Scholar 

  29. M. Büttiker, Phys. Rev. B 41, 7906(R) (1990).

  30. A. Gupta, J. J. Heremans, G. Kataria, M. Chandra, S. Fallahi, G. C. Gardner, and M. J. Manfra, Nat. Commun. 12, 5048 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-12-00343, measurements) and by the Ministry of Science and Higher Education of the Russian Federation (project no. FWGW-2022-0011, fabrication and characterization of the samples).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pokhabov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokhabov, D.A., Pogosov, A.G., Zhdanov, E.Y. et al. Scanning of Electronic States in a Quantum Point Contact Using Asymmetrically Biased Side Gates. Jetp Lett. 117, 299–305 (2023). https://doi.org/10.1134/S0021364022603049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022603049

Navigation