Skip to main content
Log in

Unipolar and Subcycle Extremely Short Pulses: Recent Results and Prospects (Brief Review)

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

In recent years, progress has been made in obtaining extremely short electromagnetic pulses up to single-cycle and unipolar half-cycle pulses. For pulses with such a dependence of the electric field strength on time, the behavior and properties of such radiation and its interaction with matter acquires a number of new features. For extremely short unipolar pulses an important role in the interaction with matter is played by the electric pulse area (the integral of the electric field strength over time at a given point in space). The review presents the latest theoretical and experimental results in the field of obtaining and interaction of extremely short pulses with extended resonant media and individual microobjects (atoms, molecules, nanostructures). The results of new publications are discussed, in which phenomena are predicted that arise during the coherent propagation of extremely short pulses in resonant media—self-compression and self-stopping of a pulse in a homogeneous medium. Particular attention is paid to the effect of ultrashort pulses on microobjects from the point of view of the recently introduced concept of “interference” of pulse areas (electrical area and envelope area). The research results presented in the review relate to a new direction in modern optics that has emerged recently—“Optics of unipolar and subcycle light,” which is becoming an actively developing area of modern physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. J. D. Maria, D. A. Stetser, and H. Heynau, Appl. Phys. Lett. 8, 174 (1966).

    Article  ADS  Google Scholar 

  2. P. G. Kryukov and V. S. Letokhov, Sov. Phys. Usp. 12, 641 (1970).

    Article  ADS  Google Scholar 

  3. O. Svelto and D. C. Hanna, Principles of Lasers (Plenum, New York, 1998).

    Book  Google Scholar 

  4. U. Keller, Appl. Phys. B 100, 15 (2010).

    Article  ADS  Google Scholar 

  5. P. G. Kryukov, Phys. Usp. 56, 849 (2013).

    Article  ADS  Google Scholar 

  6. J. Levesque and P. B. Corkum, Can. J. Phys. 84, 1 (2006).

    Article  ADS  Google Scholar 

  7. G. Mourou, Rev. Mod. Phys. 91, 030501 (2019).

  8. E. A. Khazanov, Quant. Electron. 52, 208 (2022).

    Article  ADS  Google Scholar 

  9. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  10. F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, J. Phys. B 49, 062001 (2016).

  11. M. F. Ciappina, J. A. Perez-Hernandez, A. S. Landsman, et al., Rep. Prog. Phys. 80, 054401 (2017).

  12. J. Biegert, F. Calegari, N. Dudovich, F. Quéré, and M. Vrakking, J. Phys. B 54, 070201 (2021).

  13. L. Seiffert, S. Zherebtsov, M. F. Kling, and T. Fennel, Adv. Phys. X 7, 2010595 (2022).

  14. K. Midorikawa, Nat. Photon. 16, 267 (2022).

    Article  ADS  Google Scholar 

  15. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, Nature (London, U.K.) 530, 66 (2016).

    Article  ADS  Google Scholar 

  16. A. M. Zheltikov, Phys. Usp. 60, 1087 (2017).

    Article  ADS  Google Scholar 

  17. A. M. Zheltikov, Phys. Usp. 61, 1016 (2018).

    Article  ADS  Google Scholar 

  18. A. M. Zheltikov, Phys. Usp. 64, 370 (2021).

    Article  ADS  Google Scholar 

  19. J. Biegert, F. Calegari, N. Dudovich, F. Quéré, and M. Vrakking, J. Phys. B 54, 070201 (2021).

  20. M. K. Eseev, V. I. Matveev, and D. N. Makarov, JETP Lett. 114, 387 (2021).

    Article  ADS  Google Scholar 

  21. B. Xue, K. Midorikawa, and E. J. Takahashi, Optica 9, 360 (2022).

    Article  ADS  Google Scholar 

  22. D. Hui, H. Alqattan, S. Yamada, V. Pervak, K. Yabana, and M. Th. Hassan, Nat. Photon. 16, 33 (2022).

    Article  ADS  Google Scholar 

  23. P. Peng, Y. Mi, M. Lytova, M. Britton, X. Ding, A. Yu. Naumov, P. B. Corkum, and D. M. Villeneuve, Nat. Photon. 16, 45 (2022).

    Article  ADS  Google Scholar 

  24. M. Kretschmar, A. Hadjipittas, B. Major, J. Tümmler, I. Will, T. Nagy, M. J. J. Vrakking, A. Emmanouilidou, and B. Schütte, Optica 9, 639 (2022).

    Article  ADS  Google Scholar 

  25. N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, Phys. Usp. 61, 1227 (2018).

    Article  ADS  Google Scholar 

  26. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, JETP Lett. 105, 408 (2017).

    Article  ADS  Google Scholar 

  27. R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, JETP Lett. 110, 15 (2019).

    Article  ADS  Google Scholar 

  28. R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Quant. Electron. 50, 801 (2020).

    Article  ADS  Google Scholar 

  29. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, M. O. Zhukova, A. N. Tcypkin, and N. N. Rosanov, JETP Lett. 113, 242 (2021).

    Article  ADS  Google Scholar 

  30. R. M. Arkhipov, JETP Lett. 113, 611 (2021).

    Article  ADS  Google Scholar 

  31. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. V. Babushkin, and N. N. Rosanov, Laser Phys. Lett. 19, 043001 (2022).

  32. S. V. Sazonov, Opt. Spectrosc. 130 (12) (2022, in press).

  33. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  34. S. A. Akhmanov and S. Y. Nikitin, Physical Optics (Nauka, Moscow, 2004; Clarendon, Oxford, 1997).

  35. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  36. Yu. I. Ostrovskii, Holography (Leningrad, Nauka, 1970) [in Russian].

    Google Scholar 

  37. Yu. I. Ostrovskii, M. M. Butusov, and G. V. Ostrovskaya, Holographic Interferometry (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  38. R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, New York, 1971).

    Google Scholar 

  39. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

    Article  ADS  Google Scholar 

  40. N. N. Rosanov, I. A. Aleksandrov, M. V. Arkhipov, R. M. Arkhipov, I. Babushkin, N. A. Veretenov, A. V. Dadeko, D. A. Tumakov, and S. V. Fedorov, Quantum Electron. 51, 959 (2021).

    Article  ADS  Google Scholar 

  41. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Phys. Rev. E 104, 025202 (2021).

  42. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Phys. Rev. E 105, 055203 (2022).

  43. Y. Shou, R. Hu, Z. Gong, J. Yu, J.-e. Chen, G. Mourou, X. Yan, and W. Ma, New J. Phys. 23, 053003 (2021).

  44. A. S. Kuratov, A. V. Brantov, V. F. Kovalev, and V. Yu. Bychenkov, Phys. Rev. E 106, 035201 (2022).

  45. H.-C. Wu and J. Meyer-ter Vehn, Nat. Photon. 6, 304 (2012).

    Article  ADS  Google Scholar 

  46. J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, Sci. Rep. 8, 2669 (2018).

    Article  ADS  Google Scholar 

  47. S. V. Sazonov, JETP Lett. 114, 132 (2021).

    Article  ADS  Google Scholar 

  48. S. V. Sazonov, Laser Phys. Lett. 18, 105401 (2021).

  49. S. V. Sazonov and N. V. Ustinov, JETP Lett. 114, 380 (2021).

    Article  ADS  Google Scholar 

  50. S. V. Sazonov, JETP Lett. 116, 22 (2022).

    Article  ADS  Google Scholar 

  51. S. V. Sazonov, Las. Phys. Lett. 19, 115402 (2022).

  52. S. V. Sazonov, JETP Lett. 116, 574 (2022).

    Article  ADS  Google Scholar 

  53. M. V. Arkhipov, A. N. Tsypkin, M. O. Zhukova, A. O. Ismagilov, A. V. Pakhomov, N. N. Rosanov, and R. M. Arkhipov, JETP Lett. 115, 1 (2022).

    Article  ADS  Google Scholar 

  54. E. Ilyakov, B. V. Shishkin, E. S. Efimenko, S. B. Bodrov, and M. I. Bakunov, Opt. Express 30, 14978 (2022).

    Article  ADS  Google Scholar 

  55. A. V. Pakhomov, M. V. Arkhipov, N. N. Rosanov, and R. M. Arkhipov, JETP Lett. 116, 149 (2022).

    Article  ADS  Google Scholar 

  56. A. Pakhomov, M. Arkhipov, N. Rosanov, and R. Arkhipov, Phys. Rev. A 106, 053506 (2022).

  57. V. V. Kulagin, V. N. Kornienko, and V. A. Cherepenin, Quantum Electron. 46, 315 (2016).

    Article  ADS  Google Scholar 

  58. V. V. Kulagin, V. N. Kornienko, V. A. Cherepenin, D. N. Gupta, and H. Suk, Quantum Electron. 49, 788 (2019).

    Article  ADS  Google Scholar 

  59. J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, Adv. Opt. Mater. 8, 1900681 (2020).

  60. P. Li, S. Liu, X. Chen, C. Geng, and X. Wu, Front. Optoelectron. 15, 12 (2022).

    Article  Google Scholar 

  61. M. Y. Romanovsky, Quantum Electron. 47, 212 (2017).

    Article  ADS  Google Scholar 

  62. W. R. Huang, A. Fallahi, X. Wu, H. Cankaya, A. Calendron, K. Ravi, D. Zhang, E. A. Nanni, K. Hong, and F. X. Kärtner, Optica 3, 1209 (2016).

    Article  ADS  Google Scholar 

  63. M. T. Hibberd, A. L. Healy, D. S. Lake, V. Georgiadis, E. J. H. Smith, O. J. Finlay, Th. H. Pacey, J. K. Jones, Y. Saveliev, D. A. Walsh, E. W. Snedden, R. B. Appleby, G. Burt, D. M. Graham, and S. P. Jamison, Nat. Photon. 14, 755 (2020).

    Article  ADS  Google Scholar 

  64. P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, Sci. Rep. 4, 4007 (2014).

    Article  ADS  Google Scholar 

  65. P. A. Obraztsov, N. Kanda, K. Konishi, M. Kuwata-Gonokami, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, Phys. Rev. B 90, 241416(R) (2014).

  66. P. A. Obraztsov, P. A. Chizhov, T. Kaplas, V. V. Bukin, M. Silvennoinen, C. Hsieh, K. Konishi, N. Nemoto, and M. Kuwata-Gonokami, ACS Photon. 6, 1780 (2019).

  67. A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, Appl. Phys. Lett. 94, 231112 (2009).

  68. P. A. Obraztsov, D. Lyashenko, P. A. Chizhov, K. Konishi, N. Nemoto, M. Kuwata-Gonokami, E. Welch, A. N. Obraztsov, and A. Zakhidov, Commun. Phys. 1, 14 (2018).

    Article  Google Scholar 

  69. V. I. Korolev, A. P. Pushkarev, P. A. Obraztsov, A. N. Tsypkin, A. A. Zakhidov, and S. V. Makarov, Nanophotonics 9, 187 (2020).

    Article  Google Scholar 

  70. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

  71. N. Nemoto, T. Higuchi, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Opt. Express 22, 17915 (2014).

    Article  ADS  Google Scholar 

  72. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 411 (1999).

    Article  ADS  Google Scholar 

  73. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  74. R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, Phys. Rev. A 105, 013526 (2022).

  75. R. Arkhipov, M. Arkhipov, I. Babushkin, A. Pakhomov, and N. Rosanov, J. Opt. Soc. Am. B 38, 2004 (2021).

    Article  ADS  Google Scholar 

  76. R. Arkhipov, M. Arkhipov, A. Demircan, U. Morgner, I. Babushkin, and N. Rosanov, Opt. Express 29, 10134 (2021).

    Article  ADS  Google Scholar 

  77. R. M. Arkhipov, M. V. Arkhipov, S. V. Fedorov, and N. N. Rosanov, Opt. Spektrosk. 130, 2020 (2022).

    Article  Google Scholar 

  78. M. Arkhipov, R. Arkhipov, I. Babushkin, and N. Rosanov, Phys. Rev. Lett. 128, 203901 (2022).

  79. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Yu. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  80. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London, U.K.) 397, 594 (1999).

    Article  ADS  Google Scholar 

  81. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).

    Article  ADS  Google Scholar 

  82. D. V. Novitsky, Phys. Rev. A 82, 015802 (2010).

  83. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, J. Opt. Soc. Am. B 19 (7), 163 (2002).

    Google Scholar 

  84. P. Chen, B. A. Malomed, and P. L. Chu, Phys. Rev. E 71, 066601 (2005).

  85. W. Mak, B. A. Malomed, and P. L. Chu, Phys. Rev. E 68, 026609 (2003).

  86. J. Zhou, H. Shao, J. Zhao, X. Yu, and K. S. Wong, Opt. Lett. 30, 1560 (2005).

    Article  ADS  Google Scholar 

  87. J. T. Li and J. Y. Zhou, Opt. Express 14, 2811 (2006).

    Article  ADS  Google Scholar 

  88. B. I. Mantsyzov, Coherent and Nonlinear Optics of Photonic Crystals (Fizmatlit, Moscow, 2009), Chap. 3 [in Russian].

    Google Scholar 

  89. Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature (London, U.K.) 409, 490 (2001).

    Article  ADS  Google Scholar 

  90. N. S. Ginsberg, S. N. Garner, and L. V. Hau, Nature (London, U.K.) 445, 623 (2007).

    Article  Google Scholar 

  91. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, Opt. Lett. 36, 3509 (2011).

    Article  ADS  Google Scholar 

  92. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, J. Opt. Soc. Am. A 29, 1734 (2012).

    Article  ADS  Google Scholar 

  93. D. Bykov, L. Doskolovich, N. Golovastikov, and V. Soifer, J. Opt. 15, 105703 (2013).

  94. N. Q. Ngo, Opt. Lett. 32, 3402 (2007).

    Article  ADS  Google Scholar 

  95. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).

    Article  ADS  Google Scholar 

  96. R. Slavik, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, Opt. Express 16, 18202 (2008).

    Article  ADS  Google Scholar 

  97. N. L. Kazanskiy and P. G. Serafimovich, Opt. Express 22, 14004 (2014).

    Article  ADS  Google Scholar 

  98. W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, Nat. Photon. 10, 190 (2016).

    Article  ADS  Google Scholar 

  99. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Opt. Lett. 46, 2868 (2021).

    Article  ADS  Google Scholar 

  100. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Quantum Electron. 51, 1000 (2021).

    Article  ADS  Google Scholar 

  101. V. N. Kornienko and V. V. Kulagin, in Proceedings of the Sukhorukov 33rd All-Russian SchoolSeminar on Wave Phenomena: Physics and Applications Waves-2022, Sect. 3, p. 17.

  102. N. N. Rosanov, Opt. Spectrosc. 127, 1050 (2019).

    Article  Google Scholar 

  103. N. N. Rosanov, Opt. Spectrosc. 124, 72 (2018).

    Article  ADS  Google Scholar 

  104. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 44, 1202 (2019).

    Article  ADS  Google Scholar 

  105. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, JETP Lett. 114, 129 (2021).

    Article  ADS  Google Scholar 

  106. N. Rosanov, D. Tumakov, M. Arkhipov, and R. Arkhipov, Phys. Rev. A 104, 063101 (2021).

  107. A. Pakhomov, M. Arkhipov, N. Rosanov, and R. Arkhipov, Phys. Rev. A 43103, 043103 (2022).

  108. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 130, 351 (2022).

    Article  Google Scholar 

  109. R. M. Arkhipov, P. A. Belov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Quantum Electron. 52, 610 (2022).

    Google Scholar 

  110. A. B. Migdal, Sov. Phys. JETP 9, 1163 (1939).

    Google Scholar 

  111. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics. Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, London, 1974).

  112. R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 131 (1) (2023, in press).

  113. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, JETP Lett. 114, 250 (2021).

    Article  ADS  Google Scholar 

  114. R. Arkhipov, M. Arkhipov, A. Pakhomov, and N. Rosanov, Laser Phys. 32, 066002 (2022).

  115. R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Opt. Spectrosc. 130 (7), 895 (2022).

  116. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).

    Article  ADS  Google Scholar 

  117. E. I. Shtyrkov, V. S. Lobkov, and N. G. Yarmukhametov, JETP Lett. 27, 648 (1978).

    ADS  Google Scholar 

  118. S. A. Moiseev and E. I. Shtyrkov, Sov. J. Quantum Electron. 21, 403 (1991).

    Article  ADS  Google Scholar 

  119. E. I. Shtyrkov, Opt. Spectrosc. 114, 96 (2013).

    Article  ADS  Google Scholar 

  120. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 41, 4983 (2016).

    Article  ADS  Google Scholar 

  121. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 7, 12467 (2017).

    Article  ADS  Google Scholar 

  122. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Laser. Phys. Lett. 14, 1 (2017).

    Article  Google Scholar 

  123. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Quantum Electron. 49, 958 (2019).

    Article  ADS  Google Scholar 

  124. R. Arkhipov, A. Pakhomov, M. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 11, 1961 (2021).

    Article  Google Scholar 

  125. R. Arkhipov, A. Pakhomov, M. Arkhipov, A. Demircan, U. Morgner, and N. Rosanov, Opt. Express 28, 17020 (2020).

    Article  ADS  Google Scholar 

  126. R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, JETP Lett. 111, 484 (2020).

    Article  ADS  Google Scholar 

  127. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, Yu. M. Artem’ev, and N. N. Rosanov, Opt. Spectrosc. 129, 605 (2021).

    Article  ADS  Google Scholar 

  128. R. M. Arkhipov, P. A. Belov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 130 (6), 772 (2022).

  129. M. V. Arkhipov, R. M. Arkhipov, and N. N. Rosanov, Opt. Spectrosc. 130 (9) (2022, in press).

  130. A. Yu. Parkhomenko and S. V. Sazonov, JETP Lett. 67, 934 (1998).

    Article  ADS  Google Scholar 

  131. A. Yu. Parkhomenko and S. V. Sazonov, Opt. Spectrosc. 90, 707 (2001).

    Article  ADS  Google Scholar 

  132. S. V. Sazonov, Opt. Spectrosc. 94, 400 (2003).

    Article  ADS  Google Scholar 

  133. S. V. Sazonov and A. F. Sobolevskii, J. Exp. Theor. Phys. 96, 807 (2003).

    Article  ADS  Google Scholar 

  134. N. V. Znamenskii and S. V. Sazonov, JETP Lett. 85, 358 (2007).

    Article  ADS  Google Scholar 

  135. N. V. Znamenskii and S. V. Sazonov, Opt. Spectrosc. 104, 378 (2008).

    Article  ADS  Google Scholar 

  136. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Opt. Spectrosc. 123, 610 (2017).

    Article  ADS  Google Scholar 

  137. R. M. Arkhipov, A. V. Pakhopmov, M. V. Arkhipov, D. O. Zhiguleva, and N. N. Rosanov, Opt. Spectrosc. 124, 541 (2018).

    Article  ADS  Google Scholar 

  138. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, O. O. Diachkova, and N. N. Rosanov, Opt. Spectrosc. 130 (11) (2022, in press).

  139. M. V. Bastrakova, N. V. Klenov, and A. M. Satanin, J. Exp. Theor. Phys. 131, 507 (2020).

    Article  ADS  Google Scholar 

  140. V. A. Vozhakov, M. V. Bastrakova, N. V. Klenov, I. I. Soloviev, W. V. Pogosov, D. V. Babukhin, A. A. Zhukov, and A. M. Satanin, Phys. Usp. 65, 421 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.V. Babushkin, S.V. Sazonov, A.I. Maimistov, A.V. Bogatskaya, A.M. Popov, A.N. Tsypkin, M.O. Zhukova, A.M. Bastrakova, A. Demirkan, and U. Morgner for helpful discussions of the issues discussed in this review.

Funding

The study was supported by the Russian Science Foundation, project no. 21-72-10028 (obtaining ESPs and their interaction with resonant media) and by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (the possibility of inducing non-harmonic electromagnetically-induced gratings and their coherent control in resonant media).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, P. A. Obraztsov or N. N. Rosanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V., Pakhomov, A.V. et al. Unipolar and Subcycle Extremely Short Pulses: Recent Results and Prospects (Brief Review). Jetp Lett. 117, 8–23 (2023). https://doi.org/10.1134/S0021364022602652

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022602652

Navigation