Skip to main content
Log in

Identification of Zonal Flows and Their Spatial Distribution in the TJ-II Stellarator Plasmas

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

For low-frequency \((0 < f < 20\) kHz) plasma electric potential oscillations, measured in two toroidally spaced vertical cross sections of the TJ-II stellarator (\(R = 1.5\) m, \(a = 0.22\) m, \(B = 1\) T) using double heavy ion beam probe diagnostics, long-range correlations are observed, as well as their toroidal and poloidal symmetry \(n = m = 0\). It is shown that long-range correlations do not have a magnetic or density component. Thus, the low-frequency symmetric structures of the electric potential found in the hot plasma area are zonal flows. Their quantitative characteristic is the square coherence coefficient \({{\gamma }^{2}}\). A two-dimensional map of zonal flows (long-range correlations) in the low-density \({{\bar {n}}_{e}} = 0.5 \times {{10}^{{19}}}\) m–3 regime with ECR heating has been plotted for the first time and their ballooning structure (dominance \({{\gamma }^{2}}\) on the low field side of the vessel) has been found. The decrease in the level of electrostatic turbulence (\(0 < f < 300\) kHz) observed in this region is consistent with the theoretically predicted suppression of broadband turbulence due to zonal flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Fujisawa, Nucl. Fusion. 49, 013001 (2009).

  2. A. V. Melnikov, Nat. Phys. 12, 386 (2016).

    Article  Google Scholar 

  3. V. I. Bugarya, A. V. Gorshkov, S. A. Grashin, I. V. Ianov, V. A. Krupin, L. I. Krupnik, I. S. Nedzelskiy, A. V. Melnikov, K. A. Razumova, and Yu. A. Sokolov, JETP Lett. 38, 337 (1983).

    Google Scholar 

  4. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, V. N. Zenin, and the T-10 Team, Nucl. Fusion 53, 093019 (2013).

  5. A. V. Melnikov, L. G. Eliseev, T. Estrada, et al., Nucl. Fusion 53, 092002 (2013).

  6. A. Krämer-Flecken, S. Soldatov, D. Reiser, M. Kantor, and H. R. Koslowski, Plasma Phys. Control. Fusion 51, 015001 (2009).

  7. T. Nishizawa, A. F. Almagri, J. K. Anderson, W. Goodman, M. J. Pueschel, M. D. Nornberg, S. Ohshima, J. S. Sarff, P. W. Terry, and Z. R. Williams, Phys. Rev. Lett. 122, 105001 (2019).

  8. S. Ohshima, H. Okada, L. Zang, et al., Plasma Phys. Control. Fusion 63, 104002 (2021).

  9. R. S. Wilcox, B. Ph. van Milligen, C. Hidalgo, D. T. Anderson, J. N. Talmadge, F. S. B. Anderson, and M. Ramisch, Nucl. Fusion 51, 083048 (2011).

  10. G. Sarancha, V. Svoboda, J. Stockel, and A. V. Melnikov, J. Phys.: Conf. Ser. 2055, 012003 (2021).

  11. G. A. Sarancha, A. S. Drozd, I. A. Emekeev, S. A. Ganin, D. Kropackova, I. S. Kudashev, V. V. Kulagin, M. Lauerova, A. V. Melnikov, N. S. Sergeev, O. D. Krokhalev, J. Stockel, and V. Svoboda, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 44 (4), 92 (2021).

    Google Scholar 

  12. A. V. Melnikov, T. Markovic, L. G. Eliseev, et al., Plasma Phys. Control. Fusion 57, 065006 (2015).

  13. J. Seidl, J. Krbec, M. Hron, et al., Nucl. Fusion 57, 126048 (2017).

  14. D. Basu, M. Nakajima, A. V. Melnikov, D. McColl, A. Rohollahi, S. Elgriw, C. Xiao, and A. Hirose, Nucl. Fusion 58, 024001 (2018).

  15. A. Fujisawa, T. Ido, A. Shimizu, et al., Nucl. Fusion 47, S718 (2007).

    Article  Google Scholar 

  16. A. V. Melnikov, V. A. Vershkov, S. A. Grashin, M. A. Drabinskiy, L. G. Eliseev, I. A. Zemtsov, V. A. Krupin, V. P. Lakhin, S. E. Lysenko, A. R. Nemets, M. R. Nurgaliev, N. K. Kharchev, Ph. O. Khabanov, and D. A. Shelukhin, JETP Lett. 115, 324 (2022).

    Article  ADS  Google Scholar 

  17. A. V. Melnikov, Electric Potential in Toroidal Plasmas (Springer Nature, Switzerland AG, 2019).

    Book  Google Scholar 

  18. F. C. Jobes and R. L. Hickok, Nucl. Fusion 10, 195 (1970).

    Article  Google Scholar 

  19. A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, et al., Nucl. Fusion 57, 072004 (2017).

  20. O. O. Chmyga, E. Ascasibar, J. Barcala, et al., Vopr. At. Nauki Tekh., Ser.: Fiz. Plazmy, No. 1, 248 (2019).

  21. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).

    Article  Google Scholar 

  22. H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B 2, 1 (1990).

    Article  ADS  Google Scholar 

  23. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, R. V. Shurygin, L. I. Krupnik, A. S. Kozachek, and A. I. Smolyakov, JETP Lett. 100, 555 (2015).

    Article  ADS  Google Scholar 

  24. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, D. A. Shelukhin, V. A. Vershkov, V. N. Zenin, L. I. Krupnik, A. S. Kozachek, N. K. Kharchev, and M. V. Ufimtsev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 38 (1), 49 (2015).

    Google Scholar 

  25. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, D. A. Shelukhin, V. A. Vershkov, V. N. Zenin, L. I. Krupnik, and N. K. Kharchev, J. Phys.: Conf. Ser. 591, 012003 (2015).

  26. M. A. Pedrosa, C. Silva, C. Hidalgo, B. A. Carreras, R. O. Orozco, and D. Carralero, Phys. Rev. Lett. 100, 215003 (2008).

  27. A. V. Melnikov, L. I. Krupnik, E. Ascasibar, et al., Plasma Phys. Control. Fusion 60, 084008 (2018).

  28. J. A. Alonso, E. Sánchez, I. Calvo, J. L. Velasco, K. J. McCarthy, A. Chmyga, L. G. Eliseev, T. Estrada, R. Kleiber, L. I. Krupnik, A. V. Melnikov, P. Monreal, F. I. Parra, S. Perfilov, and A. I. Zhezhera, Phys. Rev. Lett. 118, 185002 (2017).

  29. A. V. Melnikov, Symmetry 13, 1367 (2021).

    Article  ADS  Google Scholar 

  30. P. O. Khabanov, L. G. Eliseev, A. V. Melnikov, M. A. Drabinskiy, C. Hidalgo, N. K. Kharchev, A. A. Chmyga, A. S. Kozachek, I. Pastor, J. L. de Pablos, A. Cappa, and V. P. Shevelko, J. Instrum. 14, C09033 (2019).

  31. R. Sharma, P. O. Khabanov, A. V. Melnikov, et al., Phys. Plasmas 27, 062502 (2020).

  32. A. V. Melnikov, L. G. Eliseev, J.-M. Barcala, et al., Plasma Phys. Control. Fusion. 64, 054009 (2022).

  33. A. Fujisawa, K. Itoh, H. Iguchi, et al., Phys. Rev. Lett. 96, 165002 (2004).

  34. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, M. V. Ufimtsev, and V. N. Zenin, Nucl. Fusion 57, 115001 (2017).

  35. G. A. Riggs, S. H. Nogami, M. E. Koepke, A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, P. O. Khabanov, M. A. Drabinskij, N. K. Kharchev, A. S. Kozachek, and M. V. Ufimtsev, J. Plasma Phys. 87, 885870301 (2021).

Download references

ACKNOWLEDGMENTS

We are deeply grateful to the TJ-II stellarator team, CIEMAT (Madrid, Spain), led by Carlos Hidalgo, and the HIBP group from the National Science Center Kharkov Institute of Physics and Technology (Kharkov, Ukraine), led by A.S. Kozachek and L.I. Krupnik, for many years of trilateral collaboration in research on TJ-II, for help in carrying the experiments, and for productive discussions.

Funding

A.V. Melnikov acknowledges the support of the Ministry of Science and Higher Education (the competitiveness program for National Research Nuclear University MEPhI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Sarancha.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarancha, G.A., Eliseev, L.G., Khabanov, P.O. et al. Identification of Zonal Flows and Their Spatial Distribution in the TJ-II Stellarator Plasmas. Jetp Lett. 116, 98–104 (2022). https://doi.org/10.1134/S0021364022601178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601178

Navigation