Skip to main content
Log in

Anisotropy of Magnetic Properties in Single Crystals of CH3NH3PbI3 Hybrid Perovskites

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Hybrid metal-organic CH3NH3PbI3 perovskites are promising materials for photovoltaics and optoelectronics, and the recently discovered magnetic and electrical ordering in them stimulates their potential applications in spintronics. The temperature (in the range of 5–300 K) and magnetic field (up to 50 kOe) dependences of the magnetization of CH3NH3PbI3 single crystals for different directions of the magnetic field are measured. A strong anisotropy of the magnetic properties is found. If the magnetic field is perpendicular to the (001) crystallographic plane, the diamagnetic behavior of the magnetization is observed. If the field is oriented in the (001) plane, a transition from the ferromagnetic state to the paramagnetic state is revealed at a temperature of about 115 K. The features of the magnetic susceptibility observed in the low-temperature range are characteristic of the presence of antiferromagnetic correlations. In addition, in the CH3NH3PbI3 hybrid perovskite, a relation between the magnetic properties and the structural phase transition from the tetragonal to the orthorhombic phase is determined. The effective magnetic moment equals 0.76μB and 0.39μB in the tetragonal and orthorhombic phases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Wanga, D. Yanga, C. Wua, M. Sanghadasab, and Sh. Priya, Prog. Mater. Sci. 106, 100580 (2019).

  2. Z. Chen, B. Turedi, A. Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, A. AlSaggaf, O. F. Mohammed, and O. M. Bark, ACS Energy Lett. 4, 1258 (2019).

    Article  Google Scholar 

  3. S. D. Stranks and H. J. Snaith, Nat. Nanotechnol. 10, 391 (2015).

    Article  ADS  Google Scholar 

  4. J. S. Manser, J. A. Christians, and P. V. Kamat, Chem. Rev. 116, 12956 (2016).

    Article  Google Scholar 

  5. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Nat. Phys. 11, 582 (2015).

    Article  Google Scholar 

  6. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science (Washington, DC, U. S.) 347, 967 (2015).

    Article  ADS  Google Scholar 

  7. D. W. de Quilettes, K. Frohna, D. Emin, T. Kirchartz, V. Bulovic, D. S. Ginger, and S. D. Stranks, Chem. Rev. 119, 11007 (2019).

    Article  Google Scholar 

  8. K. S. Sekerbayev, G. K. Mussabek, N. S. Pokryshkin, V. G. Yakunin, E. T. Taurbayev, E. Shabdan, Zh. N. Utegulov, V. S. Chirvony, and V. Yu. Timoshenko, JETP Lett. 114, 447 (2021).

    Article  ADS  Google Scholar 

  9. A. V. Andrianov, A. N. Aleshin, and L. B. Matyushkin, JETP Lett. 109, 28 (2019).

    Article  ADS  Google Scholar 

  10. A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).

    Article  ADS  Google Scholar 

  11. M. T. Weller, O. J. Weber, P. F. Henry, A. M. di Pumpo, and T. C. Hansen, Chem. Commun. 51, 4180 (2015).

    Article  Google Scholar 

  12. P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, and M. K. Crawford, Sci. Rep. 6, 35685 (2016).

    Article  ADS  Google Scholar 

  13. I. V. Zhevstovskikh, N. S. Averkiev, M. S. Sarychev, O. I. Semenova, V. A. Golyashov, and O. E. Tereshchenko, J. Phys.: Condens. Matter 33, 045403 (2021).

  14. A. Stroppa, C. Quarti, F. de Angelis, and S. Picozzi, J. Chem. Phys. Lett. 6, 2223 (2015).

    Article  Google Scholar 

  15. B. Bandyopadhyay, H. Luitel, S. Sil, J. Dhar, M. Chakrabarti, P. Nath, P. P. Ray, and D. Sanyal, Phys. Rev. B 101, 094417 (2020).

  16. B. Náfrádi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forró, and E. Horváth, Nat. Commun. 7, 13406 (2016).

    Article  ADS  Google Scholar 

  17. P. Šenjug, J. Dragović, M. Kalanj, F. Torić, M. Rubčić, and D. Pajić, J. Magn. Magn. Mater. 479, 144 (2019).

    Article  ADS  Google Scholar 

  18. F. Lou, T. Gu, J. Ji, J. Feng, H. Xiang, and A. Stroppa, npj Comput. Mater. 6, 114 (2020).

    Google Scholar 

  19. S. Moshat, H. Luitel, and D. Sanyal, J. Magn. Magn. Mater. 519, 167463 (2021).

  20. M. Luo and Y. H. Shen, JETP Lett. 112, 58 (2020).

    Article  ADS  Google Scholar 

  21. E. S. Yudanova, T. A. Duda, O. E. Tereshchenko, and O. I. Semenova, J. Struct. Chem. 58, 1567 (2017).

    Article  Google Scholar 

  22. V. E. Anikeeva, O. I. Semenova, and O. E. Tereshchenko, J. Phys.: Conf. Ser. 1124, 041008 (2018).

  23. S. Sil, H. Luitel, J. Dhar, M. Chakrabarti, P. P. Ray, B. Bandyopadhyay, and D. Sanyal, Phys. Lett. A 384, 126278 (2020).

  24. I. V. Zhevstovskikh, N. S. Averkiev, M. S. Sarychev, O. I. Semenova, and O. E. Tereshchenko, J. Phys. D: Appl. Phys. 55, 095105 (2022).

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-797 (13.1902.21.0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zhevstovskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhevstovskikh, I.V., Charikova, T.B., Klepikova, A.S. et al. Anisotropy of Magnetic Properties in Single Crystals of CH3NH3PbI3 Hybrid Perovskites. Jetp Lett. 116, 48–53 (2022). https://doi.org/10.1134/S0021364022601014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601014

Navigation