Skip to main content

Riemann–Cartan Gravity with Dynamical Signature

Model of Riemann–Cartan gravity with varying signature of metric is considered. The basic dynamical variables of the formalism are vierbein, spin connection, and an internal metric in the tangent space. The corresponding action contains new terms, which depend on these fields. In general case the signature of the metric is determined dynamically. The Minkowski signature is preferred dynamically because the configurations with the other signatures are dynamically suppressed. We also discuss briefly the motion of particles in the background of the modified black hole configuration, in which inside the horizon the signature is that of Euclidean space-time.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. C. W. Misner and J. Wheeler, Ann. of Physics (NY) 2, 525 (1957).

    Article  ADS  Google Scholar 

  2. J. Wheeler, Geometrodynamics, Academic Press, N.Y. (1962).

    MATH  Google Scholar 

  3. S. W. Hawking, Nucl. Phys. B 144, 349 (1978).

    Article  ADS  Google Scholar 

  4. J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).

    MathSciNet  Article  ADS  Google Scholar 

  5. G. W. Gibbons and J. B. Hartle, Phys. Rev. D 42, 2458 (1990).

    MathSciNet  Article  ADS  Google Scholar 

  6. G. W. Gibbons and S. W. Hawking, Phys. Rev. Lett. 69, 1719 (1992).

    MathSciNet  Article  ADS  Google Scholar 

  7. G. Gibbons and S. W. Hawking, Comm. Math Phys. 148, 345 (1992).

    MathSciNet  Article  ADS  Google Scholar 

  8. A. D. Sakharov, Sov. Phys. JETP 60, 214 (1984).

    ADS  Google Scholar 

  9. A. Anderson and B. S. DeWitt, Found. Phys. 16, 91 (1986).

    MathSciNet  Article  ADS  Google Scholar 

  10. J. L. Friedman, K. Schleich, and D. M. Witt, Phys. Rev. Lett. 75, 1872 (1995).

    MathSciNet  Article  ADS  Google Scholar 

  11. R. P. Geroch, J. Math. Phys. 8, 782 (1967).

    Article  ADS  Google Scholar 

  12. F. J. Tipler, Ann. Phys. 108, 1 (1977).

    MathSciNet  Article  ADS  Google Scholar 

  13. F. J. Tipler, Phys. Lett. B 165, 67 (1985).

    MathSciNet  Article  ADS  Google Scholar 

  14. R. D. Sorkin, NATO Sci. Ser. B 138, 249 (1986).

    Google Scholar 

  15. R. D. Sorkin, Phys. Rev. D 33, 978 (1986).

    MathSciNet  Article  ADS  Google Scholar 

  16. A. Strominger, Phys. Rev. Lett. 52, 1733 (1984).

    MathSciNet  Article  ADS  Google Scholar 

  17. T. Dray, C. A. Manogue, and R. W. Tucker, Gen. Rel. Grav. 23, 967 (1991).

    Article  ADS  Google Scholar 

  18. T. Dray, C. A. Manogue, and R. W. Tucker, Phys. Rev. D 48, 2587 (1993).

    MathSciNet  Article  ADS  Google Scholar 

  19. C. Hellaby and T. Dray, Phys. Rev. D 49, 5096 (1994).

    MathSciNet  Article  ADS  Google Scholar 

  20. T. Dray, J. Math. Phys. 37, 5627 (1996).

    MathSciNet  Article  ADS  Google Scholar 

  21. T. Dray and C. Hellaby, Gen. Rel. Grav. 28, 1401 (1996).

    Article  ADS  Google Scholar 

  22. T. Dray, G. Ellis, C. Hellaby, and C. A. Manogue, Gen. Rel. Grav. 29, 591 (1997).

    Article  ADS  Google Scholar 

  23. M. Visser, Phys. Rev. D 41, 1116 (1990).

    MathSciNet  Article  ADS  Google Scholar 

  24. A. Vilenkin, Phys. Rev. D 37, 888 (1988).

    MathSciNet  Article  ADS  Google Scholar 

  25. A. Vilenkin, Phys. Rev. D 50, 2581 (1994).

    MathSciNet  Article  ADS  Google Scholar 

  26. A. O. Barvinsky and A. Y. Kamenshchik, Phys. Rev. D 50, 5093 (1994).

    MathSciNet  Article  ADS  Google Scholar 

  27. A. O. Barvinsky and A. Y. Kamenshchik, Int. J. Mod. Phys. D 5, 825 (1996).

    Article  ADS  Google Scholar 

  28. B. L. Altshuler and A. O. Barvinsky, Phys.-Uspekhi 39, 429 (1996).

    Article  ADS  Google Scholar 

  29. A. O. Barvinsky and A. Y. Kamenshchik, JCAP 09, 014 (2006).

  30. A. O. Barvinsky, A. Y. Kamenshchik, C. Kiefer, and C. F. Steinwachs, Phys. Rev. D 81, 043530 (2010).

  31. A. O. Barvinsky and A. Y. Kamenshchik, arXiv:2006.16812 [gr-qc].

  32. A. Borde, arXiv:gr-qc/9406053 [gr-qc].

  33. A. Borde, Phys. Rev. D 55, 7615 (1997).

    MathSciNet  Article  ADS  Google Scholar 

  34. M. Kriele and J. Martin, Class. Quantum Gravity 12, 503 (1995).

    Article  ADS  Google Scholar 

  35. M. Kossowski and M. Kriele, Class. Quantum Gravity 10, 2336 (1993).

    Google Scholar 

  36. G. Ellis, A. Sumeruk, D. Coule, and C. Hellaby, Class. Quantum Gravity 9, 1535 (1992).

    Article  ADS  Google Scholar 

  37. G. F. R. Ellis, Gen. Rel. Grav. 24, 1047 (1992).

    Article  ADS  Google Scholar 

  38. S. A. Hayward, Class. Quantum Gravity 9, 1851 (1992).

    Article  ADS  Google Scholar 

  39. F. Embacher, Phys. Rev. D 51, 6764 (1995).

    MathSciNet  Article  ADS  Google Scholar 

  40. J. Martin, Phys. Rev. D 52, 6708 (1995).

    MathSciNet  Article  ADS  Google Scholar 

  41. F. Darabi and A. Rastkar, Gen. Rel. Grav. 38, 1355 (2006).

    Article  ADS  Google Scholar 

  42. A. Borowiec, M. Francaviglia, and I. Volovich, Int. J. Geom. Meth. Mod. Phys. 4, 647 (2007).

    Article  Google Scholar 

  43. P. Pedram and S. Jalalzadeh, Phys. Rev. D 77, 123529 (2008).

  44. A. White, S. Weinfurtner, and M. Visser, Class. Quantum Gravity 27, 045007 (2010).

  45. J. Mielczarek, L. Linsefors, and A. Barrau, Int. J. Mod. Phys. D 27(05), 1850050 (2018).

  46. J. Ambjørn, D. N. Coumbe, J. Gizbert-Studnicki, and J. Jurkiewicz, JHEP 08, 033 (2015).

  47. A. Barrau and J. Grain, arXiv:1607.07589 [gr-qc].

  48. J. Nissinen and G. E. Volovik, Pisma v ZhETF 106(4), 220 (2017).

    Google Scholar 

  49. F. Zhang, Phys. Rev. D 100(6), 064043 (2019).

  50. J. Greensite, Phys. Lett. B 300, 34 (1993).

    MathSciNet  Article  ADS  Google Scholar 

  51. A. Carlini and J. Greensite, Phys. Rev. D 49, 866 (1994).

    MathSciNet  Article  ADS  Google Scholar 

  52. J. Magueijo, M. Rodríguez-Vázquez, H. Westman, and T. Złośnik, Phys. Rev. D 89(6), 063542 (2014).

  53. S. Bondarenko, Dynamical signature: complex manifolds, gauge fields and non-flat tangent space, e-Print: 2111.06095 [gr-qc].

  54. D. Diakonov, A. G. Tumanov, and A. A. Vladimirov, Phys. Rev. D 84, 124042 (2011); arXiv:1104.2432 [hep-th].https://doi.org/10.1103/PhysRevD.84.124042

  55. D. Sijacki, Acta Phys. Pol. B 29, 1089 (1998); arXiv:gr-qc/9804038 [gr-qc].

    ADS  Google Scholar 

  56. Y. Ne’eman and Dj. Šijački, Ann. Phys. 120(2), 292 (1979); https://doi.org/10.1016/0003-4916(79)90392-0

    Article  ADS  Google Scholar 

  57. Y. Ne’eman and Dj. Šijački, Phys. Lett. B 157, 275 (1985).

    MathSciNet  Article  ADS  Google Scholar 

  58. K. Ingo and D. Sijacki, Class. Quantum Gravity 19(12), 3157 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zubkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, S., Zubkov, M.A. Riemann–Cartan Gravity with Dynamical Signature. Jetp Lett. (2022). https://doi.org/10.1134/S0021364022601002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0021364022601002