Skip to main content
Log in

Does a Form Factor in Smith–Purcell Radiation Exist Always?

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

In the theory of radiation emitted by bunches of charged particles, the effects of coherence are commonly taken into account by multiplying the intensity of radiation generated by a single particle by the form factor of the bunch, which depends on its size, shape, and particle distribution. Here, it is demonstrated that this approach is, generally speaking, incorrect for polarization radiation from a wide class of structures like photonic crystals and metasurfaces. The theory of coherent Smith–Purcell radiation from such structures has been developed. It is shown that the commonly accepted approach is applicable only under two conditions: (i) the observation point lies in the plane containing the trajectory of the bunch and the normal to the surface of the target, and (ii) the radius of the bunch is much smaller than the effective range of the Coulomb field of the moving electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. P. Potylitsyn, JETP Lett. 103, 669 (2016).

    Article  ADS  Google Scholar 

  2. A. P. Potylitsyn, B. A. Alekseev, A. V. Vukolov, M. V. Shevelev, A. A. Baldin, V. V. Bleko, P. V. Karataev, and A. S. Kubankin, JETP Lett. 115 (2022, in press).

  3. R. Kieffer, L. Bartnik, M. Bergamaschi, V. V. Bleko, M. Billing, L. Bobb, J. Conway, M. Forster, P. Karataev, A. S. Konkov, R. O. Jones, T. Lefevre, J. S. Markova, S. Mazzoni, Y. Padilla Fuentes, A. P. Potylitsyn, J. Shanks, and S. Wang, Phys. Rev. Lett. 121, 054802 (2018).

  4. P. Karataev, G. Naumenko, A. Potylitsyn, M. Shevelev, and K. Artyomov, Results Phys. 33, 105079 (2022).

  5. V. P. Shestopalov, Diffractive Electronics (Vishcha Shkola, Khar’kov, 1976) [in Russian].

    Google Scholar 

  6. A. A. Tishchenko and D. Yu. Sergeeva, JETP Lett. 110, 638 (2019).

    Article  ADS  Google Scholar 

  7. P. Tonkaev and Yu. Kivshar, JETP Lett. 112, 615 (2020).

    Article  ADS  Google Scholar 

  8. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, Phys. Rev. X 5, 041027 (2015).

  9. A. C. Overvig, S. C. Malek, and N. Yu, Phys. Rev. Lett. 125, 017402 (2020).

  10. Y. Kurman and I. Kaminer, Nat. Phys. 16, 868 (2020).

    Article  Google Scholar 

  11. A. Pizzi, G. Rosolen, L. J. Wong, R. Ischebeck, M. Soljačić, T. Feurer, and I. Kaminer, Adv. Sci. 7, 1901609 (2020).

  12. Y. Kurman, R. Dahan, H. H. Sheinfux, K. Wang, M. Yannai, Y. Adiv, O. Reinhardt, L. H. Tizei, S. Y. Woo, and J. Li, Science (Washington, DC, U. S.) 372, 1181 (2021).

    Article  ADS  Google Scholar 

  13. S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).

    Article  ADS  Google Scholar 

  14. V. P. Shestopalov, The Smith–Purcell Effect (Nova Science, New York, 1998).

    Google Scholar 

  15. P. Rullhusen, X. Artru, and P. Dhez, Novel Radiation Sources Using Relativistic Electrons (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  16. A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, Diffraction Radiation from R-elativistic Particles, Springer Tracts Mod. Phys. 239 (2010).

  17. V. G. Veselago, Phys. Usp. 54, 1161 (2011).

    Article  ADS  Google Scholar 

  18. N. Horiuchi, T. Ochiai, J. Inoue, Y. Segawa, Y. Shibata, K. Ishi, Y. Kondo, M. Kanbe, H. Miyazaki, F. Hinode, S. Yamaguti, and K. Ohtaka, Phys. Rev. E 74, 056601 (2006).

  19. S. Yamaguti, J. Inoue, O. Haeberlé, and K. Ohtaka, Phys. Rev. B 66, 195202 (2002).

  20. T. Ochiai and K. Ohtaka, Phys. Rev. B 69, 125106 (2004).

  21. K. Yamamoto, R. Sakakibara, S. Yano, Y. Segawa, Y. Shibata, K. Ishi, T. Ohsaka, T. Hara, Y. Kondo, H. Miyazaki, F. Hinode, T. Matsuyama, S. Yamaguti, and K. Ohtaka, Phys. Rev. E 69, 045601(R) (2004).

  22. T. Ochiai and K. Ohtaka, Opt. Express 13, 7683 (2005).

    Article  ADS  Google Scholar 

  23. D. Yu. Sergeeva, A. A. Tishchenko, and M. N. Strikhanov, Nucl. Instrum. Methods Phys. Res., Sect. B 402, 206 (2017).

    Google Scholar 

  24. D. I. Garaev, D. Yu. Sergeeva, and A. A. Tishchenko, Phys. Rev. B 103, 075403 (2021).

  25. D. Yu. Sergeeva, A. S. Aryshev, A. A. Tishchenko, K. E. Popov, N. Terunuma, and J. Urakawa, Opt. Lett. 46, 544 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project nos. 21-72-00113 (D. Sergeeva, Sections 2 and 3) and 17-72-20013 (A. Tishchenko, Sections 1 and 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tishchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeeva, D.Y., Tishchenko, A.A. Does a Form Factor in Smith–Purcell Radiation Exist Always?. Jetp Lett. 115, 713–719 (2022). https://doi.org/10.1134/S0021364022600847

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022600847

Navigation