Skip to main content
Log in

Quantum Dynamical Approach to Various Scattering Mechanisms and Their Influences on Thermal Conductivity of Sr- and Zn-Doped La2CuO4 High-Temperature Superconductor Cuprate

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A theoretical investigation of the thermal conductivity of lightly Sr- and Zn-doped La2CuO4 high temperature superconductor cuprates has been analyzed auspiciously. We used a quantum dynamical technique to develop the symbol of relaxation time and other scattering processes from frequency (energy) line widths in this formulation. The primary focus of this study is the effect of phonon-dopant atom scattering on the thermal conductivity of doped La2CuO4, as well as other dominant scattering mechanisms such as electron–phonon, cubic and quartic anharmonic phonon, cubic and quartic phonon interference, and phonon-magnon, among others. An acceptable level of agreement between theory and experiment has been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B: Condens. Matter 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Article  ADS  Google Scholar 

  3. S. Sugai, in Mechanisms of High Temperature Superconductivity, Ed. by H. Kamimura and A. Oshiyama (Springer, Heidelberg, 1989).

    Google Scholar 

  4. G. P. Srivastava, The Physics of Phonons (Taylor Francis, New York, 1990).

    Google Scholar 

  5. P. G. Klemens, Proc. R. Soc. London, Ser. A 208, 108 (1951).

    Article  ADS  Google Scholar 

  6. J. Bardeen, G. Rickayazen, and L. Tewordt, Phys. Rev. 113, 982 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  ADS  Google Scholar 

  8. L. Tewordt and Th. Wolkhausen, Solid State Commun. 75, 515 (1990).

    Article  ADS  Google Scholar 

  9. P. G. Klemens, Proc. Phys. Soc. A 68, 1113 (1955).

    Article  ADS  Google Scholar 

  10. B. P. Bahuguna, C. P. Painuli, and B. D. Indu, Acta Phys. Polon. A 80, 527 (1991).

    Article  ADS  Google Scholar 

  11. D. Feinburg, S. Ciouchi, and F. Pasquale, Int. J. Mod. Phys. B 1, 1317 (1990).

    Article  ADS  Google Scholar 

  12. V. I. Altukhov and G. S. Zavt, Phys. Status Solidi B 65, 83 (1974).

    Article  ADS  Google Scholar 

  13. B. P. Bahuguna, C. P. Painuli, and B. D. Indu, Acta Phys. Polon. A 80, 527 (1991).

    Article  ADS  Google Scholar 

  14. M. A. Ansari, V. Ashokan, B. D. Indu, and R. Kumar, Acta Phys. Polon. A 121, 639 (2012).

    Article  ADS  Google Scholar 

  15. H. B. G. Casimir, Physica (Amsterdam, Neth.) 5, 481 (1938).

  16. F. R. N. Nabarro, Proc. R. Soc. London, Ser. A 209, 278 (1951).

    Article  ADS  Google Scholar 

  17. M. A. Ansari, N. P. Singh, and B. D. Indu, Indian J. Pure Appl. Phys. 45, 27 (2007).

    Google Scholar 

  18. A. Inyushkin, A. Taldenkov, S. Shabanov, and T. Uvarova, Phys. C (Amsterdam, Neth.) 235–240, 1487 (1994).

  19. B. D. Indu, Int. J. Mod. Phys. B 04, 1379 (1990).

    Article  ADS  Google Scholar 

  20. I. Pomeranchuk, J. Phys. USSR 4, 259 (1941).

    Google Scholar 

  21. A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall, Ann. Phys. 5, 360 (1961).

    Article  ADS  Google Scholar 

  22. P. G. Klemens, Solid State Physics (Academic, New York, 1958).

    Google Scholar 

  23. M. L. Kulic, Phys. Rep. 338, 1 (2000).

    Article  ADS  Google Scholar 

  24. F. Giustino, M. L. Cohen, and S. G. Louie, Nature (London, U.K.) 452, 975 (2008).

    Article  ADS  Google Scholar 

  25. J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).

    MATH  Google Scholar 

  26. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  27. P. B. Allen, W. E. Pickett, and H. Krakauer, Phys. Rev. B 37, 7482 (1988).

    Article  ADS  Google Scholar 

  28. R. O. Pohl, Phys. Rev. Lett. 8, 481 (1962).

    Article  ADS  Google Scholar 

  29. G. A. Slack, Phys. Rev. 126, 427 (1962).

    Article  ADS  Google Scholar 

  30. R. Berman, Thermal Conduction in Solids (Clarendon, Oxford, 1976).

    Google Scholar 

  31. P. F. Henning, G. Cao, J. E. Crow, W. O. Putikka, and P. J. Hirschfeld, J. Supercond. 8, 453 (1995).

    Article  ADS  Google Scholar 

  32. A. Parmar and M. K. Bera, J. Supercond. Nov. Magn. 34, 2771 (2021).

    Article  Google Scholar 

  33. C. M. Bhandari and G. S. Verma, Phys. Rev. 152, 731 (1966).

    Article  ADS  Google Scholar 

  34. A. P. Kampf, Phys. Rep. 249, 219 (1994).

    Article  ADS  Google Scholar 

  35. S. G. Ovchinnikov, Phys. Solid State 41, 534 (1999).

    Article  ADS  Google Scholar 

  36. S. G. Ovchinnikov, Phys. Usp. 40, 993 (1997).

    Article  ADS  Google Scholar 

  37. X. F. Sun, J. Takea, S. Komia, and Y. Ando, Phys. Rev. B 67, 104503 (2003).

  38. G. B. Teitel’baum, V. E. Kataev, E. L. Vavilova, P. L. Kuhns, A. P. Yeyes, and W. G. Moulton, JETP Lett. 78, 1242 (2003).

    Article  Google Scholar 

  39. P. D. Grigoriev and T. Ziman, JETP Lett. 106, 349 (2022).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Akanksha Parmar and M.K. Bera developed the theoretical formalism, carried out the analytical computations, and executed the numerical simulations. A.K. Dimri provided critical feedback. M.K. Bera devised the initial concept and supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bera.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, A., Dimri, A.K. & Bera, M.K. Quantum Dynamical Approach to Various Scattering Mechanisms and Their Influences on Thermal Conductivity of Sr- and Zn-Doped La2CuO4 High-Temperature Superconductor Cuprate. Jetp Lett. 115, 406–414 (2022). https://doi.org/10.1134/S0021364022200383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022200383

Navigation