Skip to main content
Log in

Theory of a Two-Dimensional Rotating Wigner Cluster

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A two-dimensional Wigner cluster (2DWC) with the number of electrons up to 200 in a parabolic potential well has been studied numerically and analytically. It has been shown that the inner part of the 2DWC in the axisymmetric potential well is polycrystalline, whereas electrons in outer layers form pronounced circular shells. The scaling of the cluster under the variation of the stiffness of the potential well has been considered. The threshold of the free rotation of the solid cluster in the axisymmetric potential well has been determined. The action of an alternating magnetic field generated by a coaxial solenoid on the 2DWC has been examined. It has been shown that the initially immobile solid 2DWC subjected to a weak vortex electric field begins to rotate at an angular velocity equal to half the cyclotron frequency. Furthermore, in a stronger vortex field, the cluster not only rotates but also begins to be periodically compressed, holding its structure. A further increase in the vortex field can lead to the total collapse of the cluster accompanied by the destruction of its structure. A sufficiently strong vortex electric field can also result in the differential rotation of the shells of the 2DWC. The rotational friction coefficient caused by ohmic losses in the gate, which can restrict the free rotation of the 2DWC, has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).

    Article  Google Scholar 

  2. A. V. Chaplik, Sov. Phys. JETP 35, 395 (1972).

    ADS  Google Scholar 

  3. P. M. Platzman and H. Fukuyama, Phys. Rev. B 10, 3150 (1974).

    Article  ADS  Google Scholar 

  4. A. V. Chaplik, JETP Lett. 31, 252 (1980).

    ADS  Google Scholar 

  5. C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).

    Article  ADS  Google Scholar 

  6. R. C. Ashoori, Nature (London, U.K.) 379, 413 (1996).

    Article  ADS  Google Scholar 

  7. C. Yannouleas and U. Landman, Phys. Rev. Lett. 82, 5325 (1999).

    Article  ADS  Google Scholar 

  8. R. Egger, W. Häusler, C. H. Mak, and H. Grabert, Phys. Rev. Lett. 82, 3320 (1999).

    Article  ADS  Google Scholar 

  9. Mehrdad Mahmoodian and M. V. Entin, J. Phys.: Conf. Ser. 2227, 012012 (2022).

  10. Yu. E. Lozovik, Sov. Phys. Usp. 30, 912 (1987).

    Article  ADS  Google Scholar 

  11. V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49, 2667 (1994).

    Article  ADS  Google Scholar 

  12. V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700 (1995).

    Article  ADS  Google Scholar 

  13. A. V. Filinov, M. Bonitz, and Yu. E. Lozovik, Phys. Rev. Lett. 86, 3851 (2001).

    Article  ADS  Google Scholar 

  14. R. Chitra and T. Giamarchi, Eur. Phys. J. B 44, 455 (2005).

    Article  ADS  Google Scholar 

  15. Y. P. Chen, G. Sambandamurthy, Z. H. Wang, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W. West, Nat. Phys. 2, 452 (2006).

    Article  Google Scholar 

  16. N. D. Drummond, and R. J. Needs, Phys. Rev. Lett. 102, 126402 (2009).

  17. Y. P. Monarkha and V. E. Syvokon, Low Temp. Phys. 38, 1067 (2012).

    Article  ADS  Google Scholar 

  18. M. Zarenia, D. Neilson, B. Partoens, and F. M. Peeters, Phys. Rev. B 95, 115438 (2017).

  19. I. Shapir, A. Hamo, S. Pecker, C. P. Moca, Ö. Legeza, G. Zarand, and S. Ilani, Science (Washington, DC, U. S.) 364, 870 (2019).

    Article  ADS  Google Scholar 

  20. E. C. Regan, D. Wang, C. Jin, et al., Nature (London, U. K.) 579, 359 (2020).

    Article  ADS  Google Scholar 

  21. B. Padhi, R. Chitra, and P. W. Phillips, Phys. Rev. B 103, 125146 (2021).

  22. T. Smolenski, P. E. Dolgirev, C. Kuhlenkamp, A. Popert, Y. Shimazaki, P. Back, X. Lu, M. Kroner, K. Watanabe, T. Taniguchi, I. Esterlis, E. Demler, and A. Imamoglu, Nature (London, U. K.) 595, 53 (2021).

    Article  ADS  Google Scholar 

  23. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Pearson, 1970), Vol. 2, Chap. 17.

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00622).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmood M. Mahmoodian, Mehrdad M. Mahmoodian or M. V. Entin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodian, M.M., Mahmoodian, M.M. & Entin, M.V. Theory of a Two-Dimensional Rotating Wigner Cluster. Jetp Lett. 115, 608–614 (2022). https://doi.org/10.1134/S0021364022100599

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100599

Navigation