Skip to main content
Log in

Lithium Doping Effect for Enhancing Thermoelectric and Optoelectronic Performance of Co2NbAl

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Cobalt-rich Heusler compounds represent a very interesting family of Heusler alloys owing to their performance in spintronics and magnetic devices. The quaternary Heusler, created by swapping of an anti-atom site with an alkali element, improves the performance of physical properties for applications. In this study, the electronic structures and magnetic properties before and after substitution of Co by Li in the Co2NbAl compound were investigated using ab initio computational calculations. Our findings revealed that substitution of Co antisites by Li destroys the half-metallic character of Co2LiNbAl. Analysis of the band structures shows that the parent ternary Heusler compound is ferromagnetic half-metallic with a half-metallic gap (band gap in the minority channel) equal to 0.497 eV. Using the HSE06 approach substituting of Co by Li leads the material to change its behavior and becomes a semiconductor with a gap equal to 1.043 eV. The results of optical and thermoelectric properties such as absorption coefficient, reflectivity or thermo power, and figure of merit are very interesting in the optoelectronic field and encourage researchers to realize photovoltaic cells and thermoelectric generators with higher efficiency. These interesting features suggest that Co2NbAl and LiNbAlCo Heusler compounds are good candidates for applications in spintronics and optoelectronics for commercial semiconductor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ikhtiar, S. Kasai, A. Itoh, Y. K. Takahashi, T. Ohkubo, S. Mitani, and K. Hono, J. Appl. Phys. 115, 173912 (2014).

  2. T. Kubota, S. Tsunegi, M. Oogane, Sh. Mizukami, T. Miyazaki, H. Naganuma, and Y. Ando, Appl. Phys. Lett. 94, 122504 (2009).

  3. T. Saito, N. Tezuka, M. Matsuura, and S. Sugimoto, Appl. Phys. Exp. 6, 103006 (2013).

  4. J. Winterlik, S. Chadov, A. Gupta, et al., Adv. Mater. 24, 6283 (2012).

    Article  Google Scholar 

  5. T. Jungwirth, V. Novák, X. Marti, M. Cukr, F. Máca, A. B. Shick, J. Mašek, P. Horodyská, P. Nemec, V. Holŷ, J. Zemaek, P. Kužel, I. Němec, B. L. Gallagher, R. P. Campion, C. T. Foxon, and J. Wunderlich, Phys. Rev. B 83, 035321 (2011).

  6. A. Beleanu, Thesis (Johannes Gutenberg-Universität, Mainz, 2014).

  7. R. L. Zhang, L. Damewood, Y. J. Zeng, H. Z. Xing, C. Y. Fong, L. H. Yang, R. W. Peng, and C. Felser, J. Appl. Phys. 122, 013901 (2017).

  8. J. Chen, E. Liu, X. Qi, H. Luo, W. Wang, H. Zhang, Sh. Wang J. Cai, and G. Wu, Comput. Mater. Sci. 89, 130 (2014).

    Article  Google Scholar 

  9. E. Liu, W. Wang, L. Feng, W. Zhu, G. Li, J. Chen, H. Zhang, G. Wu, Ch. Jiang, H. Xu, and F. de Boer, Nat. Commun. 3, 873 (2012).

    Article  ADS  Google Scholar 

  10. E. K. Liu, H. G. Zhang, G. Z. Xu, X. M. Zhang, R. S. Ma, W. H. Wang, J. L. Chen, H. W. Zhang, G. H. Wu, L. Feng, and X. X. Zhang, Appl. Phys. Lett. 102, 122405 (2013).

  11. T. T. Lin, X. F. Dai, R. K. Guo, Z. X. Cheng, L. Y. Wang, X. T. Wang, and G. D. Li, Sci. Rep. 7, 42034 (2017). https://doi.org/10.1038/srep42034

    Article  ADS  Google Scholar 

  12. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Wien, 2001).

    Google Scholar 

  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  14. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  15. K. Schwarz, P. Blaha, and G. K. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  ADS  Google Scholar 

  16. Sh. A. Sof and D. C. Gupta, AIP Adv. 10, 105330 (2020).

  17. J. He, S. Sh. Naghavi, V. I. Hegde, M. Amsler, and Ch. Wolverton, Chem. Mater. 30(15), 4978 (2018).

    Article  Google Scholar 

  18. K. L. Yao, G. Y. Gao, Z. L. Liu, and L. Zhu, Solid State Commun. 133, 301 (2005).

    Article  ADS  Google Scholar 

  19. G. Y. Gao, K. L. Yao, E. Sasoğlu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2007).

  20. B. Doumi, A. Tadjer, F. Dahmane, A. Djedid, A. Yakoubi, Y. Barkat, M. Ould Kada, A. Sayede, and L. Hamada, J. Supercond. Nov. Magn. 27, 293 (2014).

    Article  Google Scholar 

  21. S. Ghosh and S. Ghosh, Phys. Scr. 94, 125001 (2019).

  22. K. H. J. Buschow and P. G. van Engen, J. Magn. Magn. Mater. 25, 90 (1981).

    Article  ADS  Google Scholar 

  23. H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  24. H. A. Kramers, La diffusion de la lumiere par les atomes, Atti Cong. Intern. Fisica (Transactoions of Volta Centenary Congress, Como, 1927), Vol. 2, p. 545.

  25. A. M. Fox, Optical Properties of Solids (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  26. F. Wooten, Optical Properties of Solids (Academic, New York, 1972).

    Google Scholar 

  27. H. Wang, Y. F. Wang, X. W. Cao, L. Zhang, M. Feng, and G. X. Lan, Phys. Status Solidi B 246, 437 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education and Scientific Research and the Directory General of Scientific Research and Technological Development (DGRST) (Projet de Recherche-Formation Universitaire no B00L02CU460120190001). Sohail Ahmad acknowledges the support of Deanship of Scientific Research at King Khalid University (grant no. RGP2/139/43, research groups program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bensaid.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensaid, D., Doumi, B. & Ahmad, S. Lithium Doping Effect for Enhancing Thermoelectric and Optoelectronic Performance of Co2NbAl. Jetp Lett. 115, 539–547 (2022). https://doi.org/10.1134/S002136402210054X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402210054X

Navigation