Skip to main content
Log in

Optical Harmonics Generation under the Interaction of Intense (up to 1014 W/cm2) Mid-Infrared Femtosecond Laser Radiation of a Fe:ZnSe Laser System with a Dense Laminar Gas Jet

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Low-order (fifth, seventh, and ninth) harmonics have been generated under the interaction of intense (I ~ 1014 W/cm2) femtosecond mid-infrared radiation of a laser system based on a Fe:ZnSe crystal (wavelength is 4.55 μm, pulse duration by the FWHM level of intensity is 160 fs, and the pulse energy is up to 3.5 mJ) with an argon jet (pressure is up to 10 bar) in the tunneling ionization regime (Keldysh parameter is \(\gamma = 0.2\)). The maximum energy efficiencies of the 5th, 7th, and 9th harmonic generation are 2 × 10–7, 6 × 10‒9, and 3 × 10–10, respectively. It has been established that nonlinear effects of propagation of generating radiation under an increase in the pressure of the gas jet begin to significantly affect the process of generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and Ch. K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987).

    Article  ADS  Google Scholar 

  2. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988).

    Article  ADS  Google Scholar 

  3. J. J. Macklin, J. D. Kmetec, and C. L. Gordon III, Phys. Rev. Lett. 70, 766 (1993).

    Article  ADS  Google Scholar 

  4. G. Tempea, M. Geissler, and T. Brabec, J. Opt. Soc. Am. B 16, 669 (1999).

    Article  ADS  Google Scholar 

  5. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  6. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (199).

  7. R. A. Ganeev, S. Y. Stremoukhov, A. V. Andreev, and A. S. Alnaser, Appl. Sci. 9, 1701 (2019).

    Article  Google Scholar 

  8. R. Klas, A. Kirsche, M. Gebhardt, J. Buldt, H. Stark, S. Hädrich, J. Rothhardt, and J. Limpert, PhotoniX 2, 1 (2021).

  9. B. Shan and Z. Chang, Phys. Rev. A 65, 011804 (2001).

  10. A. S. Johnson, T. Avni, E. W. Larsen, D. R. Austin, and J. P. Marangos, Philos. Trans. R. Soc. London, Ser. A 377 (2145), 20170468 (2019).

  11. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, M. O. Zhukova, A. N. Tsypkin, and N. N. Rozanov, JETP Lett. 113, 242 (2021).

    Article  ADS  Google Scholar 

  12. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  13. R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, A. V. Pakhomov, and N. N. Rozanov, JETP Lett. 114, 250 (2021).

    Article  ADS  Google Scholar 

  14. U. Bengs and N. Zhavoronkov, Sci. Rep. 11, 1 (2021).

    Article  Google Scholar 

  15. R. A. Ganeev, G. S. Boltaev, S. Y. Stremoukhov, V. V. Kim, A. V. Andreev, and A. S. Alnaser, Eur. Phys. J. D 74 (10), 1 (2020).

    Article  Google Scholar 

  16. A. Rundquist, Ch. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, Science (Washington, DC, U. S.) 280 (5368), 1412 (1998).

    Article  ADS  Google Scholar 

  17. L. Hareli, G. Shoulga, and A. Bahabad, J. Phys. B: At. Mol. Opt. Phys. 53, 233001 (2020).

  18. H. Agueny, J. Chem. Phys. 154, 244702 (2021).

  19. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, A. A. Voronin, P. B. Glek, S. V. Ryabchuk, E. E. Serebryannikov, A. B. Fedotov, and A. M. Zheltikov, JETP Lett. 112, 17 (2020).

    Article  ADS  Google Scholar 

  20. M. K. Eseev, V. I. Matveev, and D. N. Makarov, JETP Lett. 114, 387 (2021).

    Article  ADS  Google Scholar 

  21. V. V. Strelkov, V. T. Platonenko, A. F. Sterzhantov, and M. Yu. Ryabikin, Phys. Usp. 59, 425 (2016).

    Article  ADS  Google Scholar 

  22. E. A. Migal, S. Yu. Stremoukhov, and F. V. Potemkin, Phys. Rev. A 101, 021401 (2020).

  23. E. Constant, D. Garzella, P. Breger, E. Mével, Ch. Dorrer, C. le Blanc, F. Salin, and P. Agostini, Phys. Rev. Lett. 82, 1668 (1999).

    Article  ADS  Google Scholar 

  24. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, S. V. Ryabchuk, A. A. Voronin, and A. M. Zheltikov, Opt. Lett. 43, 5571 (2018).

    Article  ADS  Google Scholar 

  25. T. Popmintchev, M.-Ch. Chen, D. Popmintchev, et al., Science (Washington, DC, U. S.) 336 (6086), 1287 (2012).

    Article  ADS  Google Scholar 

  26. E. Migal, A. Pushkin, B. Bravy, V. Gordienko, N. Minaev, A. Sirotkin, and F. Potemkin, Opt. Lett. 44, 2550 (2019).

    Article  ADS  Google Scholar 

  27. A. V. Andreev, S. Yu. Stremoukhov, and O. A. Shoutova, Eur. Phys. J. D 66, 1 (2012).

    Article  Google Scholar 

  28. S. Yu. Stremoukhov and A. V. Andreev, Laser Phys. 28, 035403 (2018).

  29. X. F. Li, A. l’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, Phys. Rev. A 39, 5751 (1989).

    Article  ADS  Google Scholar 

  30. J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, New J. Phys. 16, 033022 (2014).

  31. T. Popmintchev, M.-Ch. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Proc. Natl. Acad. Sci. U. S. A. 106, 10516 (2009).

    Article  ADS  Google Scholar 

  32. Y. R. Shen and G.-Zh. Yang, in The Supercontinuum Laser Source (Springer, New York, 2016), p. 1.

    Google Scholar 

  33. Á. Börzsönyi, Z. Heiner, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, Opt. Express 18, 25847 (2010).

    Article  ADS  Google Scholar 

  34. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Pulses (Nauka, Moscow, 1988; Am. Inst. Phys., Boston, 1991).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-29-12030). B.V. Rumiantsev is the scholar of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Rumiantsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumiantsev, B.V., Mikheev, K.E., Pushkin, A.V. et al. Optical Harmonics Generation under the Interaction of Intense (up to 1014 W/cm2) Mid-Infrared Femtosecond Laser Radiation of a Fe:ZnSe Laser System with a Dense Laminar Gas Jet. Jetp Lett. 115, 390–395 (2022). https://doi.org/10.1134/S0021364022100277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100277

Navigation