Skip to main content
Log in

Elastic Dipoles in Crystal and Glassy Aluminum and High-Entropy Fe20Ni20Cr20Co20Cu20 Alloy

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Molecular dynamics simulation has shown that anisotropic local atomic configurations, which are in essence elastic dipoles, exist in noncrystalline structures of Al and FeNiCrCoCu. It has been argued that these elastic dipoles similar in their vibrational characteristics to interstitial dumbbells in the corresponding crystals form a defect subsystem of the glassy state. A new approach to the solution of the problem of identification of defects in model noncrystalline structures has been proposed on this foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Fan, Z. Fan, X. Liu, Z. Lu, and E. Ma, Mater. Horiz. 8, 2359 (2021).

    Article  Google Scholar 

  2. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).

  3. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  4. V. Khonik and N. Kobelev, Metals 9, 605 (2019).

    Article  Google Scholar 

  5. R. A. Konchakov, A. S. Makarov, A. S. Aronin, N. P. Kobelev, and V. A. Khonik, JETP Lett. 113, 345 (2021).

    Article  ADS  Google Scholar 

  6. W. Ingle, R. C. Perrin, and H. R. Schober, J. Phys. F: Met. Phys. 11, 1161 (1981).

    Article  ADS  Google Scholar 

  7. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

    Article  ADS  Google Scholar 

  8. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).

    Google Scholar 

  9. P. H. Dederichs, C. Lehman, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69–70, 176 (1978).

    Article  ADS  Google Scholar 

  10. A. Makarov, G. Afonin, K. Zakharov, A. Vasiliev, J. Qiao, N. Kobelev, and V. Khonik, Intermetallics 141, 107422 (2022).

  11. J. Jäckle and K.-L. Jüngst, Z. Phys. B 30, 243 (1978).

    Article  ADS  Google Scholar 

  12. E. R. Grannan, M. Randeria, and J. P. Sethna, Phys. Rev. B 41, 7784 (1990).

    Article  ADS  Google Scholar 

  13. N. P. Kobelev, V. A. Khonik, A. S. Makarov, G. V. Afonin, and Yu. P. Mitrofanov, J. Appl. Phys. 115, 033513 (2014).

  14. N. P. Kobelev, V. A. Khonik, G. V. Afonin, and E. L. Kolyvanov, J. Non-Cryst. Solids 411, 1 (2015).

    Article  ADS  Google Scholar 

  15. V. Spiric, L. E. Rehn, K.-H. Robrock, and W. Schilling, Phys. Rev. B 15, 672 (1977).

    Article  ADS  Google Scholar 

  16. D. A. Freedman, D. Roundy, and T. A. Arias, Phys. Rev. B 80, 064108 (2009).

  17. J. S. Wrobel, M. R. Zemla, D. Nguyen-Manh, P. Olsson, L. Messina, C. Domain, T. Wejrzanowski, and S. L. Dudarev, Comput. Mater. Sci. 194, 110435 (2021).

  18. R. A. Konchakov, V. A. Khonik, and N. P. Kobelev, Phys. Solid State 57, 856 (2015).

    Article  ADS  Google Scholar 

  19. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  20. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

  21. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Article  ADS  Google Scholar 

  22. D. Farkas and A. Caro, J. Mater. Res. 33, 3218 (2018).

    Article  ADS  Google Scholar 

  23. W. Schilling, J. Nucl. Mater. 69–70, 465 (1978).

    Article  ADS  Google Scholar 

  24. M. A. Kretova, R. A. Konchakov, N. P. Kobelev, and V. A. Khonik, JETP Lett. 111, 679 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-62-46003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Konchakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konchakov, R.A., Makarov, A.S., Aronin, A.S. et al. Elastic Dipoles in Crystal and Glassy Aluminum and High-Entropy Fe20Ni20Cr20Co20Cu20 Alloy. Jetp Lett. 115, 280–285 (2022). https://doi.org/10.1134/S0021364022100095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100095

Navigation