Skip to main content
Log in

Magnetic Irreversibilities and Nonreciprocity of the Microwave Absorption of FeCr2O4 Spinel

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A FeCr2O4 single crystal with the spinel structure is grown by the zone melting method with optical heating. The critical temperatures of establishing the orbital ordering TOO = 138 K, the formation of the collinear ferrimagnetic state TN = 65 K, and the formation of the spiral modulation of the magnetic structure Ts = 38 K are determined from the temperature dependences of the heat capacity and magnetic susceptibility. An anomaly of the susceptibility at T ~ 21 K, below which the hysteresis curves become butterfly-like is probably caused by a change in the magnetic anisotropy. It is established that the magnetic resonance spectrum in the microwave X-band (~9.4 GHz) at T = 30 K changes under the reversal of the direction of the external magnetic field (nonreciprocity phenomenon). Magnetic and induced electric dipole transitions are considered theoretically. The detected nonreciprocity is explained by the interference of these transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Tsurkan, H.-A. Krug von Nidda, J. Deisenhofer, P. Lunkenheimer, and A. Loidl, Phys. Rep. 926, 1 (2021).

    Article  ADS  Google Scholar 

  2. A. Sundaresan and N. V. Ter-Oganessian, J. Appl. Phys. 129, 060901 (2021).

  3. J. Bertinshaw, C. Ulrich, A. Günther, F. Schrettle, M. Wohlauer, S. Krohns, M. Reehuis, A. J. Studer, M. Avdeev, D. V. Quach, J. R. Groza, V. Tsurkan, A. Loidl, and J. Deisenhofer, Sci. Rep. 4, 6079 (2014).

    Article  Google Scholar 

  4. L. Lin, H. X. Zhu, X. M. Jiang, K. F. Wang, S. Dong, Z. B. Yan, Z. R. Yang, J. G. Wan, and J.-M. Liu, Sci. Rep. 4, 6530 (2014).

    Article  ADS  Google Scholar 

  5. K. Singh, A. Maignan, C. Simon, and C. Martin, Appl. Phys. Lett. 99, 172903 (2011).

  6. A. Maignan, C. Martin, K. Singh, C. Simon, O. I. Lebedev, and S. Turner, J. Solid State Chem. 195, 41 (2012).

    Article  ADS  Google Scholar 

  7. Q. Zhang, K. Singh, F. Guillou, C. Simon, Y. Breard, V. Caignaert, and V. Hardy, Phys. Rev. B 85, 054405 (2012).

  8. S. Toyoda, N. Abe, S. Kimura, Y. H. Matsuda, T. Nomura, A. Ikeda, S. Takeyama, and T. Arima, Phys. Rev. Lett. 115, 267207 (2015).

  9. I. Kézsmárki, D. Szaller, S. Bordács, V. Kocsis, Y. Tokunaga, Y. Taguchi, H. Murakawa, Y. Tokura, H. Engelkamp, T. Rõõm, and U. Nagel, Nat. Commun. 5, 3203 (2014).

    Article  ADS  Google Scholar 

  10. L. Weymann, L. Bergen, T. Kain, et al., Quantum Mater. 5, 1 (2020).

    Article  Google Scholar 

  11. G. Shirane, D. E. Cox, and S. J. Pickart, J. Appl. Phys. 35, 954 (1964).

    Article  ADS  Google Scholar 

  12. A. Wold, R. J. Arnott, E. Whipple, and J. B. Goodenough, J. Appl. Phys. 34, 1085 (1963).

    Article  ADS  Google Scholar 

  13. K. Tsuda, D. Morikawa, Y. Watanabe, S. Ohtani, and T. Arima, Phys. Rev. B 81, 180102 (2010).

  14. K. V. Vasin and M. V. Eremin, J. Phys.: Condens. Matter 33, 225501 (2021).

  15. K. V. Vasin and M. V. Eremin, J. Exp. Theor. Phys. 129, 1029 (2019).

    Article  ADS  Google Scholar 

  16. S. Kawaguchi, H. Ishibashi, K. Nagami, and Y. Kubota, J. Phys.: Condens. Matter 28, 296001 (2016).

  17. S. Ohtani, Y. Watanabe, M. Saito, N. Abe, K. Taniguchi, H. Sagayama, T. Arima, M. Watanabe, and Y. Noda, J. Phys.: Condens. Matter 22, 176003 (2010).

  18. H. J. Levinstein, M. Robbins, and C. Capio, Mater. Res. Bull. 7, 27 (1972).

    Article  Google Scholar 

  19. L. Prodan, S. Yasin, A. Jesche, J. Deisenhofer, H.‑A. Krug von Nidda, F. Mayr, S. Zherlitsyn, J. Wosnitza, A. Loidl, and V. Tsurkan, Phys. Rev. B 104, L020410 (2021).

  20. S. Nakamura and A. Fuwa, Phys. Proc. 75, 747 (2015).

    Article  ADS  Google Scholar 

  21. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, Oxford, 2012).

    Google Scholar 

  22. Y. Iguchi, Y. Nii, and Y. Onose, Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  23. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Fizmatlit, Moscow, 1994; CRC, Boca Raton, FL, 1996).

  24. A. V. Sadovnikov, K. V. Bublikov, E. N. Beginin, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, JETP Lett. 102, 142 (2015).

    Article  ADS  Google Scholar 

  25. M. V. Eremin, JETP Lett. 109, 249 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Yusupov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupov, R.V., Cherosov, M.A., Gabbasov, B.F. et al. Magnetic Irreversibilities and Nonreciprocity of the Microwave Absorption of FeCr2O4 Spinel. Jetp Lett. 115, 167–173 (2022). https://doi.org/10.1134/S0021364022030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022030109

Navigation