Skip to main content
Log in

Enhancement of the Cubic Nonlinearity in Epsilon-Near-Zero Media: Nondegenerate Optical Kerr Effect

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Nonlinear media whose permittivity ε can be reduced to nearly zero allow an additional enhancement of a nonlinear optical response. It is commonly accepted that the cubic nonlinearity is enhanced at a certain wavelength λENZ if Reε(λENZ) = 0. It is shown in this work that the enhancement of the nonlinear refractive index n2 generally occurs at a different wavelength \(\lambda {\kern 1pt} '\). This anomalous shift is manifested when the wavelength λENZ of a material is near the resonance of the nonlinear susceptibility. An analytical condition for the enhancement of the nondegenerate optical Kerr effect is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, J. Lightwave Technol. 32, 66 (2014).

    Article  Google Scholar 

  2. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, Science (Washington, DC, U. S.) 286, 1523 (1999).

    Article  Google Scholar 

  3. C. L. Evans and X. S. Xie, Ann. Rev. Anal. Chem. 1, 883 (2008).

    Article  Google Scholar 

  4. J. L. Ma and M. T. Sun, Nanophotonics 9, 1341 (2020).

    Article  Google Scholar 

  5. D. E. Chang, V. Vuletic, and M. D. Lukin, Nat. Photon. 8, 685 (2014).

    Article  ADS  Google Scholar 

  6. A. Krasnok, M. Tymchenko, and A. Alu, Mater. Today 21, 8 (2018).

    Article  Google Scholar 

  7. G. P. Lin, A. Coillet, and Y. K. Chembo, Adv. Opt. Photon. 9, 828 (2017).

    Article  Google Scholar 

  8. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Opt. Express 16, 1280 (2008).

    Article  ADS  Google Scholar 

  9. F. Flamini, N. Spagnolo, and F. Sciarrino, Rep. Prog. Phys. 82, 016001 (2019).

  10. M. Kauranen and A. V. Zayats, Nat. Photon. 6, 737 (2012).

    Article  ADS  Google Scholar 

  11. S. S. Kharintsev, A. V. Kharitonov, S. K. Saikin, A. M. Alekseev, and S. G. Kazarian, Nano Lett. 17, 5533 (2017).

    Article  ADS  Google Scholar 

  12. K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J. H. Choi, A. Bogdanov, H. G. Park, and Y. Kivshar, Science (Washington, DC, U. S.) 367, 288 (2020).

    Article  ADS  Google Scholar 

  13. I. Liberal and N. Engheta, Science (Washington, DC, U. S.) 358, 1540 (2017).

    Article  ADS  Google Scholar 

  14. X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, Adv. Opt. Mater. 6, 1701292 (2018).

  15. N. Kinsey, C. de Vault, A. Boltasseva, and V. M. Shalaev, Nat. Rev. Mater. 4, 742 (2019).

    Article  ADS  Google Scholar 

  16. O. Reshef, I. de Leon, M. Z. Alam, and R. W. Boyd, Nat. Rev. Mater. 4, 535 (2019).

    Article  Google Scholar 

  17. Y. M. Yang, J. Lu, A. Manjavacas, T. S. Luk, H. Z. Liu, K. Kelley, J. P. Maria, E. L. Runnerstrom, M. B. Sinclair, S. Ghimire, and I. Brener, Nat. Phys. 15, 1022 (2019).

    Article  Google Scholar 

  18. I. A. Kolmychek, V. B. Novikov, I. V. Malysheva, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Opt. Lett. 45, 1866 (2020).

    Article  ADS  Google Scholar 

  19. W. D. Tian, F. Liang, D. Z. Lu, H. H. Yu, and H. J. Zhang, Photon. Res. 9, 317 (2021).

    Article  Google Scholar 

  20. J. B. Khurgin, M. Clerici, V. Bruno, L. Caspani, C. de Vault, J. Kim, A. Shaltout, A. Boltasseva, V. M. Shalaev, M. Ferrera, D. Faccio, and N. Kinsey, Optica 7, 226 (2020).

    Article  ADS  Google Scholar 

  21. J. Bohn, T. S. Luk, C. Tollerton, S. W. Hutchings, I. Brener, S. Horsley, W. L. Barnes, and E. Hendry, Nat. Commun. 12, 1017 (2021).

    Article  ADS  Google Scholar 

  22. Z. Chai, X. Y. Hu, F. F. Wang, C. Li, Y. T. Ao, Y. Wu, K. B. Shi, H. Yang, and Q. H. Gong, Laser Photon. Rev. 11, 1700042 (2017).

  23. S. S. Kharintsev, A. V. Kharitonov, A. M. Alekseev, and S. G. Kazarian, Nanoscale 11, 7710 (2019).

    Article  Google Scholar 

  24. S. S. Kharintsev, A. V. Kharitonov, A. R. Gazizov, and S. G. Kazarian, ACS Appl. Mater. Interfaces 12, 3862 (2020).

    Article  Google Scholar 

  25. S. Suresh, O. Reshef, M. Z. Alam, J. Upham, M. Karimi, and R. W. Boyd, ACS Photon. 8, 125 (2021).

  26. E. G. Carnemolla, L. Caspani, C. de Vault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, Opt. Mater. Express 8, 3392 (2018).

    Article  ADS  Google Scholar 

  27. W. D. Tian, F. Liang, S. M. Chi, C. Li, H. H. Yu, H. Zhang, and H. J. Zhang, ACS Omega 5, 2458 (2020).

    Article  Google Scholar 

  28. L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, Phys. Rev. Lett. 116, 233901 (2016).

  29. G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).

    Article  ADS  Google Scholar 

  30. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 2008).

    Google Scholar 

  31. A. Kharitonov and S. Kharintsev, Opt. Mater. Express 10, 513 (2020).

    Article  ADS  Google Scholar 

  32. A. V. Kharitonov, I. V. Yanilkin, A. I. Gumarov, I. R. Vakhitov, R. V. Yusupov, L. R. Tagirov, S. S. Kharintsev, and M. Kh. Salakhov, Thin Solid Films 653, 200 (2018).

    Article  ADS  Google Scholar 

  33. R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, ACS Photon. 5, 3452 (2018).

  34. R. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. di Falco, and D. Faccio, Sci. Rep. 6, 27700 (2016).

    Article  ADS  Google Scholar 

  35. R. W. Boyd, Z. M. Shi, and I. de Leon, Opt. Commun. 326, 74 (2014).

    Article  ADS  Google Scholar 

  36. N. Kinsey, A. A. Syed, D. Courtwright, C. de Vault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. van Stryland, and A. Boltasseva, Opt. Mater. Express 5, 2395 (2015).

    Article  ADS  Google Scholar 

  37. G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).

    Article  Google Scholar 

  38. W. H. Jia, M. Liu, Y. C. Lu, X. Feng, Q. W. Wang, X. Q. Zhang, Y. B. Ni, F. T. Hu, M. L. Gong, X. L. Xu, Y. Y. Huang, W. L. Zhang, Y. M. Yang, and J. G. Han, Light Sci. Appl. 10, 11 (2021).

    Article  ADS  Google Scholar 

  39. L. Rodríguez-Suné, M. Scalora, A. S. Johnson, C. Cojocaru, N. Akozbek, Z. J. Coppens, D. Perez-Salinas, S. Wall, and J. Trull, APL Photon. 5, 010801 (2020).

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. A.I. Fishman (Kazan Federal University) for valuable remarks.

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00066. A.V. Kharitonov, who performed analytical calculations, acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation (project no. 0671-2020-0050, state task in the field of scientific activity at Kazan Federal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kharintsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonov, A.V., Gazizov, A.R. & Kharintsev, S.S. Enhancement of the Cubic Nonlinearity in Epsilon-Near-Zero Media: Nondegenerate Optical Kerr Effect. Jetp Lett. 114, 687–692 (2021). https://doi.org/10.1134/S0021364021230077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021230077

Navigation