Skip to main content
Log in

Low-Temperature Increase in the Van Der Waals Friction Force with the Relative Motion of Metal Plates

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The van der Waals friction force (dissipative fluctuation electromagnetic force) between metallic plates during their relative motion at temperatures close to 1 K is calculated within the Levin–Polevoi–Rytov fluctuation electromagnetic theory. It is shown that the van der Waals friction force for gold plates with a small number of defects and low residual resistance \({{\rho }_{0}}\) can increase by six to eight orders of magnitude with a decrease in the temperature below 100 K, reaching a maximum value proportional to \({{\rho }_{0}}^{{ - 4/5}}\). For superconducting metals, an increase in friction can be observed when the temperature decreases to the critical transition temperature, after which friction disappears. Another important result is the weak dependence of the friction force on the distance a between the plates (\( \propto {\kern 1pt} {{a}^{{ - q}}}\) with 0 < q < 1). The absolute values of the friction forces are achievable for measurements in experiments using the modern atomic force microscopy technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. B 51, 793 (1948).

    Google Scholar 

  2. E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

    Google Scholar 

  3. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  4. E. V. Teodorovich, Proc. R. Soc. London, Ser. A 362, 71 (1978).

    Article  ADS  Google Scholar 

  5. L. S. Levitov, Eur. Phys. Lett. 8, 499 (1989).

    Article  ADS  Google Scholar 

  6. V. G. Polevoi, Sov. Phys. JETP 71, 1119 (1990).

    ADS  Google Scholar 

  7. V. E. Mkrtchian, Phys. Lett. A 209, 299 (1995).

    Article  ADS  Google Scholar 

  8. J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997).

    ADS  Google Scholar 

  9. M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).

    Article  ADS  Google Scholar 

  10. A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter 9, 345 (1999).

    ADS  Google Scholar 

  11. A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).

    Article  ADS  Google Scholar 

  12. T. G. U. Leonhardt, New. J. Phys. 11, 033035 (2009).

  13. J. B. Pendry, New. J. Phys. 12, 033028 (2010).

  14. G. Barton, J. Phys.: Condens. Matter 23, 335004 (2011).

  15. J. S. Høye, I. Brevik, and K. A. Milton, Eur. Phys. J. D 66, 365004 (2012).

  16. J. S. Høye and I. Brevik, Eur. Phys. J. D 68, 61 (2014).

    Article  ADS  Google Scholar 

  17. G. V. Dedkov and A. A. Kyasov, Chin. Phys. 56, 3002 (2018).

    Article  Google Scholar 

  18. G. V. Dedkov and A. A. Kyasov, Phys. Solid State 60, 2349 (2018).

    Article  ADS  Google Scholar 

  19. J. S. Høye, I. Brevik, and K. A. Milton, Symmetry 29, 8 (2016).

    Google Scholar 

  20. G. V. Dedkov and A. A. Kyasov, Phys. Usp. 60, 1 (2017).

    Article  Google Scholar 

  21. G. Pieplow and C. Henkel, New J. Phys. 15, 023027 (2013).

  22. G. L. Klimchitskaya and V. M. Mostepanenko, Contemp. Phys. 47, 131 (2006).

    Article  ADS  Google Scholar 

  23. J. S. Høye, I. Brevik, and K. A. Milton, J. Phys. A: Math. Gen. 39, 6031 (2006).

    Article  ADS  Google Scholar 

  24. K. A. Milton, Y. Li, P. Kalauni, P. Parashar, P. Guerodt, G.-L. Ingold, A. Lambrecht, and S. Reynaud, Fortschr. Phys. 65, 1600047 (2017).

  25. G. Bimonte, T. Emig, M. Kardar, and M. Kruger, Ann. Rev. Condens. Matter Phys. 8, 119 (2017).

    Article  ADS  Google Scholar 

  26. V. M. Mostepanenko, Universe 7, 704084 (2021).

  27. M. L. Levin, V. G. Polevoi, and S. M. Rytov, Sov. Phys. JETP 52, 1054 (1980).

    ADS  Google Scholar 

  28. Handbook of Physics, Ed. by E. U. Condon and H. Odishaw (McGraw-Hill, New York, 1967).

    Google Scholar 

  29. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 2000).

    MATH  Google Scholar 

  30. B. C. Stipe, T. D. Stowe, T. W. Kenny, and D. Rugar, Phys. Rev. Lett. 87, 096801 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dedkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedkov, G.V. Low-Temperature Increase in the Van Der Waals Friction Force with the Relative Motion of Metal Plates. Jetp Lett. 114, 713–718 (2021). https://doi.org/10.1134/S0021364021230053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021230053

Navigation