Skip to main content
Log in

Double Quantum Dot Field Effect Transistor on Graphene

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A novel functional field effect transistor (FET) is introduced. The proposed FET is modeled on graphene nanoribbon (GNR), however it is applicable for any two-dimensional (2D) structures with energy gap. As in most graphene-based FETs, current passes through semiconducting 2D GNR. But here by the special geometry of gate contact, the GNR is turned into two coupled quantum dots in series. By applying gate voltage, discrete energy levels are generated in the two quantum dots of the channel and resonant tunneling transport occurs through these levels. The coupling between dots and sizes of dots determine the current characteristic of the device. By self consistently solving the NEGF and 3D Poisson equations, current of the FET is derived. Resonant tunneling of carriers results in a stepwise increase in current with drain voltage and current peaks are observed by the increment of gate voltage; i.e., negative differential conductance occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina, IEEES Trans. Electron Dev. 62, 593 (2015).

    Article  ADS  Google Scholar 

  2. H. Mohamadpour and A. Asgari, Phys. E (Amsterdam, Neth.) 46, 270 (2012).

  3. H. Mohammadpour, Phys. E (Amsterdam, Neth.) 81, 91 (2016).

  4. S. Kahmann, A. Shulga, and M. A. Loi, Adv. Funct. Mater. 30, 1904174 (2020).

  5. F. Hetsch, N. Zhao, S. V. Kershaw, and A. L. Rogach, Mater. Today 16, 312 (2013).

    Article  Google Scholar 

  6. A. Asgari and A. A. Khorrami, Opto-Electron. Rev. 21, 147 (2013).

    Article  ADS  Google Scholar 

  7. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science (Washington, DC, U. S.) 286 (5444), 1550 (1999).

    Article  Google Scholar 

  8. H. Agarwal, P. Kushwaha, J. P. Duarte, Y.-K. Lin, A. B. Sachid, M.-Y. Kao, H.-L. Chang, S. Salahuddin, and Ch. Hu, IEEE Trans. Electron Dev. 65, 2033 (2018).

    Article  ADS  Google Scholar 

  9. G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues, Phys. Rev. B 84, 125453 (2011).

  10. X. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Nat. Commun. 6, 7383 (2015).

    Article  ADS  Google Scholar 

  11. J. H. Schon, A. Dodabalapur, C. Kloc, and B. Batlogg, Science (Washington, DC, U. S.) 290 (5493), 963 (2000).

    Article  ADS  Google Scholar 

  12. D. Kim and J. Choi, Org. Electron. 51, 287 (2017).

    Article  Google Scholar 

  13. R. Li, L. Schneider, W. Heimbrodt, H. Wu, M. Koch, and Rahimi-Iman, Sci. Rep. 6, 28224 (2016).

    Article  ADS  Google Scholar 

  14. H. Kalita, V. Harikrishnan, and M. Aslam, in Proceedings of the IEEE 5th International Nanoelectronics Conference INEC (2013), p. 463.

  15. F. Hetsch, N. Zhao, S. V. Kershaw, and A. L. Rogach, Mater. Today 16, 9 (2013).

    Article  Google Scholar 

  16. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. Pelayo Garcia de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).

    Article  ADS  Google Scholar 

  17. M. I. Alomar, L. Serra, and D. Sanchez, Phys. Rev. B 94, 075402 (2016).

  18. J. Pawlowski, G. Skowron, P. Szumniak, and S. Bednarek, Phys. Rev. Appl. 15, 054066 (2021).

  19. R. Akter, N. Islam, and S. Waheed, Int. J. Comput. Appl. 109, 41 (2015).

    Google Scholar 

  20. V. K. Voronov, Int. J. Inform. International Journal of Information, Technology, and Computer Science 2, 42 (2020).

  21. S. Datta, Quantum Transport: Atom to Transistor, 2nd ed. (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  22. K. I. Bolotin, K. J. Sikes, Z. Zhang, Zh. Jiang, M. Klima, G. Fudenberg, J. Hone, Ph. Kim, and H. L. Stor-mer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  23. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).

    Article  ADS  Google Scholar 

  24. M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, Proc. IEEE 96, 1511 (2008).

    Article  Google Scholar 

  25. R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

    Article  Google Scholar 

  26. S. Datta, Superlatt. Microstruct. 28, 253 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohammadpour.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, H. Double Quantum Dot Field Effect Transistor on Graphene. Jetp Lett. 114, 707–712 (2021). https://doi.org/10.1134/S002136402123003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402123003X

Navigation