Skip to main content
Log in

Enhanced Nonlinear Photoluminescence of Au–Carbon Dot Nanohybrids Produced by Photocatalytic Reduction of Au(III) Ions

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Nanohybrids composed of carbon dots and gold nanoparticles are of considerable interest for luminescence imaging, photocatalysis, luminescence sensing and nonlinear optics. We describe a method for controlled growth of Au nanoparticles on the carbon nanodots by photocatalytic reduction of Au(III) ions under blue light irradiation. The resulting Au–carbon dots nanohybrids exhibit enhanced nonlinear photoluminescence under near-infrared femtosecond laser excitation with intensity which sharply depends on the gold-to-carbon dots volume ratio. Bright broadband photoluminescence of nanohybrids makes them attractive for luminescent imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Mur-ray, S.-Y. Xie, and Y.-P. Sun, J. Am. Chem. Soc. 129, 37 (2007).

    Google Scholar 

  2. X. Gao, C. Du, Z. Zhuang, and W. Chen, J. Mater. Chem. C 4, 29 (2016).

    Google Scholar 

  3. R.Wang, K.-Q. Lu, Z.-R. Tang, and Y.-J. Xu, J. Mater. Chem. A 5, 8 (2017).

    ADS  Google Scholar 

  4. X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, ACS Nano 7, 12 (2013).

    Google Scholar 

  5. L. Cao, S. Sahu, P. Anilkumar, C. E. Bunker, J. Xu, K. A. S. Fernando, P. Wang, E. A. Guliants, K. N. Tackett, and Y.-P. Sun, J. Am. Chem. Soc. 133, 13 (2011).

    Google Scholar 

  6. S. Wadhwa, A. T. John, A. Mathur, M. Khanuja, G. Bhattacharya, S. S. Roy, and S. C. Ray, Methods X 7, 100963 (2020).

  7. J. Zong, X. Yang, A. Trinchi, S. Hardin, I. Cole, Y. Zhu, C. Li, T. Muster, and G. Wei, Nanoscale 5, 22 (2013).

    Article  Google Scholar 

  8. S. Liu, H. Cao, Z. Wang, W. Tu, and Z. Dai, Chem. Commun. 51, 75 (2015).

    Google Scholar 

  9. Y. Kamura and K. Imura, J. Phys. Chem. C 124, 13 (2020).

    Article  Google Scholar 

  10. S. I. Kudryashov, P. A. Danilov, S. G. Bezhanov, A. A. Rudenko, A. A. Ionin, S. A. Uryupin, S. F. Umanskaya, and N. A. Smirnov, JETP Lett. 109, 6 (2019).

    Google Scholar 

  11. A. A. Astafiev, A. M. Shakhov, A. S. Kritchenkov, V. N. Khrustalev, D. V. Shepel, V. A. Nadtochenko, and A. G. Tskhovrebov, Dyes Pigm. 188, 109176 (2021).

  12. A. A. Astafiev, A. M. Shakhov, A. A. Vasin, Y. V. Kostina, and V. A. Nadtochenko, JETP Lett. 110, 7 (2019).

    Article  Google Scholar 

  13. J. Cure, H. Assi, K. Cocq, L. Marín, K. Fajerwerg, P. Fau, E. Bêche, Y. J. Chabal, A. Estève, and C. Rossi, Langmuir 34, 5 (2018).

    Article  Google Scholar 

  14. N. G. Khlebtsov, Anal. Chem. 80, 17 (2008).

    Article  Google Scholar 

  15. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem. 79, 11 (2007).

    Article  Google Scholar 

  16. S. Basu, S. Panigrahi, S. Praharaj, S. Kumar Ghosh, S. Pande, S. Jana, and T. Pal, New J. Chem. 30, 9 (2006).

    Article  Google Scholar 

  17. V. Amendola and M. Meneghetti, J. Phys. Chem. C 113, 11 (2009).

    Article  Google Scholar 

  18. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 11 (2006).

    Article  Google Scholar 

  19. M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68, 11 (2003).

    Article  Google Scholar 

  20. M. B. Agranat, S. I. Ashitkov, A. V. Ovchinnikov, D. S. Sitnikov, A. A. Yurkevich, O. V. Chefonov, L. T. Perel’man, S. I. Anisimov, and V. E. Fortov, JETP Lett. 101, 9 (2015).

    Article  Google Scholar 

  21. T. Haug, P. Klemm, S. Bange, and J. M. Lupton, Phys. Rev. Lett. 115, 6 (2015).

    Article  Google Scholar 

  22. L. Roloff, P. Klemm, I. Gronwald, R. Huber, J. M. Lupton, and S. Bange, Nano Lett. 17, 12 (2017).

    Article  Google Scholar 

  23. Y.-Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W.-S. Chang, P. Nordlander, and S. Link, ACS Nano 12, 2 (2018).

    Google Scholar 

  24. B. Ostovar, Y.-Y. Cai, L. J. Tauzin, S. A. Lee, A. Ahmadivand, R. Zhang, P. Nordlander, and S. Link, ACS Nano 14, 11 (2020).

    Article  Google Scholar 

  25. Y.-Y. Cai, L. J. Tauzin, B. Ostovar, S. Lee, and S. Link, J. Chem. Phys. 155, 6 (2021).

    Article  Google Scholar 

  26. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. van Hulst, J. Microsc. 229, 2 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurements were performed at shared research facility no. 506694 and large-scale research facility no. 1440743, the Federal Research Center for Chemical Physics.

Funding

This work was supported by the Russian Scientific Foundation, project no. 21-72-20169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Astafiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafiev, A.A., Shakhov, A.M., Minayeva, S.A. et al. Enhanced Nonlinear Photoluminescence of Au–Carbon Dot Nanohybrids Produced by Photocatalytic Reduction of Au(III) Ions. Jetp Lett. 114, 665–673 (2021). https://doi.org/10.1134/S0021364021230016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021230016

Navigation