Skip to main content
Log in

Electronic and Superconducting Properties of the AFeAs (A = Li, Na) Family Alkali-Metal Pnictides: Current Stage of the Research (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The review is focused on one of the most exotic families of iron-based superconductors belonging to the AFeAs structural class, where A is an alkali metal. We briefly concern physical and electronic properties of the typical members of this family, LiFeAs and NaFeAs, discuss the theoretical models describing the multigap superconducting state, and the experimental data available in literature. As well, we specify the main unsolved problems, that seem crucial for both, the AFeAs family and for iron-based superconductors in g-eneral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The data points for Tc ≈ 16.5 K represent the characteristic ratios averaged over those determined by the authors in the IMARE studies of ten Andreev junctions with the corresponding local critical temperature obtained in LiFeAs single crystals.

REFERENCES

  1. J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505(R) (2008).

  2. I. Morozov, A. Boltalin, O. Volkova, et al., Cryst. Growth Des. 10, 4428 (2010).

    Article  Google Scholar 

  3. F. Steckel, M. Roslova, R. Beck, et al., Phys. Rev. B 91, 184516 (2015).

  4. A. Lankau, K. Koepernik, S. Borisenko, V. Zabolotnyy, B. Büchner, J. van den Brink, and H. Eschrig, Phys. Rev. B 82, 184518 (2010).

  5. Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017 (2016).

    Article  ADS  Google Scholar 

  6. H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Mater. Today 21, 278 (2018).

    Article  Google Scholar 

  7. F. Steckel, F. Caglieris, R. Beck, M. Roslova, D. Bombor, I. Morozov, S. Wurmehl, B. Büchner, and C. Hess, Phys. Rev. B 94, 184514 (2016).

  8. F. Rullier-Albenque, C. R. Phys. 17, 164 (2016).

    Article  ADS  Google Scholar 

  9. Y. M. Dai, H. Miao, L. Y. Xing, X. C. Wang, P. S. Wang, H. Xiao, T. Qian, P. Richard, X. G. Qiu, W. Yu, C. Q. Jin, Z. Wang, P. D. Johnson, C. C. Homes, and H. Ding, Phys. Rev. X 5, 031035 (2015).

  10. A. F. Wang, X. G. Luo, Y. J. Yan, J. J. Ying, Z. J. Xiang, G. J. Ye, P. Cheng, Z. Y. Li, W. J. Hu, and X. H. Chen, Phys. Rev. B 85, 224521 (2012).

  11. Z. R. Ye, Y. Zhang, F. Chen, M. Xu, J. Jiang, X. H. Niu, C. H. P. Wen, L. Y. Xing, X. C. Wang, C. Q. Jin, B. P. Xie, and D. L. Feng, Phys. Rev. X 4, 031041 (2014).

  12. G. Tan, Y. Song, R. Zhang, L. Lin, Z. Xu, L. Tian, S. Chi, M. K. Graves-Brook, S. Li, and P. Dai, Phys. Rev. B 95, 054501 (2017).

  13. S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Büchner, Phys. Rev. Lett. 105, 067002 (2010).

  14. L. Y. Xing, X. Shi, P. Richard, X. C. Wang, Q. Q. Liu, B. Q. Lv, J.-Z. Ma, B. B. Fu, L.-Y. Kong, H. Miao, T. Qian, T. K. Kim, M. Hoesch, H. Ding, and C. Q. Jin, Phys. Rev. B 94, 094524 (2016).

  15. L. Y. Xing, H. Miao, X. C. Wang, J. Ma, Q. Q. Liu, Z. Deng, H. Ding, and C. Q. Jin, J. Phys.: Condens. Matter 26, 435703 (2014).

  16. M. J. Pitcher, T. Lancaster, J. D. Wright, I. Franke, A. J. Steele, P. J. Baker, F. L. Pratt, W. T. Thomas, D. R. Parker, S. J. Blundell, and S. J. Clarke, J. Am. Chem. Soc. 132, 10467 (2010).

    Article  Google Scholar 

  17. M. Gooch, B. Lv, J. H. Tapp, Z. Tang, B. Lorenz, A. M. Guloy, and P. C. W. Chu, Eur. Phys. Lett. 85, 27005 (2008).

    Article  ADS  Google Scholar 

  18. M. Wang, M. Wang, H. Miao, S. V. Carr, D. L. Abernathy, M. B. Stone, X. C. Wang, L. Xing, C. Q. Jin, X. Zhang, J. Hu, T. Xiang, H. Ding, and P. Dai, Phys. Rev. B 86, 144511 (2012).

  19. A. Bianconi, S. Agrestini, D. Di Castro, G. Campi, G. Zangari, and N. L. Saini, Phys. Rev. B 65, 174515 (2002).

  20. Y. S. Kushnirenko, D. V. Evtushinsky, T. K. Kim, I. Morozov, L. Harnagea, S. Wurmehl, S. Aswartham, B. Büchner, A. V. Chubukov, and S. V. Borisenko, Phys. Rev. B 102, 184502 (2020).

  21. J. D. Wright, T. Lancaster, I. Franke, A. J. Steele, J. S. Möller, M. J. Pitcher, A. J. Corkett, D. R. Parker, D. G. Free, F. L. Pratt, P. J. Baker, S. J. Clarke, and S. J. Blundell, Phys. Rev. B 85, 054503 (2012).

  22. D. R. Parker, M. J. P. Smith, T. Lancaster, A. J. Steel, I. Franke, P. J. Baker, F. L. Pratt, M. J. Pitcher, S. J. Blundell, and S. J. Clarke, Phys. Rev. Lett. 104, 057007 (2010).

  23. M. Toyoda, Y. Kobayashi, and M. Itoh, Phys. Rev. B 97, 094515 (2018).

  24. A. A. Kordyuk, Low Temp. Phys. 40, 286 (2014).

    Article  ADS  Google Scholar 

  25. I. A. Nekrasov and M. V. Sadovskii, JETP Lett. 99, 598 (2014).

    Article  ADS  Google Scholar 

  26. S. V. Borisenko, D. V. Evtushinsky, Z.-H. Liu, I. Morozov, R. Kappenberger, S. Wurmehl, B. Büchner, A. N. Yaresko, T. K. Kim, M. Hoesch, T. Wolf, and N. D. Zhigadlo, Nat. Phys. 12, 311 (2016).

    Article  Google Scholar 

  27. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 102, 26 (2015).

    Article  ADS  Google Scholar 

  28. P. V. Arribi and L. de Medici, Phys. Rev. B 104, 125130 (2021).

  29. K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.‑H. Liu, P. Richard, T. Sato, J. B. He, D.-M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.-C. Wang, Phys. Rev. Lett. 108, 037002 (2012).

  30. S. V. Borisenko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, R. Follath, and B. Büchner, Symmetry 4, 251 (2012).

    Article  Google Scholar 

  31. R. P. Day, G. Levy, M. Michiardi, et al., Phys. Rev. Lett. 121, 076401 (2018).

  32. S. Thirupathaiah, D. V. Evtushinsky, J. Maletz, V. B. Zabolotnyy, A. A. Kordyuk, T. K. Kim, S. Wurmehl, M. Roslova, I. Morozov, B. Büchner, and S. V. Borisenko, Phys. Rev. B 86, 214508 (2012).

  33. Z.-H. Liu, P. Richard, K. Nakayama, et al., Phys. Rev. B 84, 064519 (2011).

  34. S. T. Cui, S. Y. Zhu, A. F. Wang, S. Kong, S. L. Ju, X. G. Luo, X. H. Chen, G. B. Zhang, and Z. Sun, Phys. Rev. B 86, 155143 (2012).

  35. S. T. Cui, S. Kong, S. L. Ju, P. Wu, A. F. Wang, X. G. Luo, X. H. Chen, G. B. Zhang, and Z. Sun, Phys. Rev. B 88, 245112 (2013).

  36. M. D. Watson, S. Aswartham, L. C. Rhodes, B. Parrett, H. Iwasawa, M. Hoesch, I. Morozov, B. Büchner, and T. K. Kim, Phys. Rev. B 97, 035134 (2018).

  37. I. R. Fisher, L. Degiorgi, and Z. X. Shen, Rep. Progr. Phys. 74, 124506 (2011).

  38. M. Yi, D. H. Lu, R. G. Moore, K. Kihou, C.-H. Lee, A. Iyo, H. Eisaki, T. Yoshida, A. Fujimori, and Z.‑X. Shen, New J. Phys. 14, 073019 (2012).

  39. L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).

  40. R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Yin, Y. J. Yan, Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, and X. H. Chen, Nature (London, U.K.) 459, 64 (2009).

    Article  ADS  Google Scholar 

  41. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

  42. S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Phys. Rev. B 84, 224505 (2011).

  43. M. M. Korshunov, Phys. Usp. 57, 813 (2014).

    Article  ADS  Google Scholar 

  44. M. M. Korshunov, in Perturbation Theory: Advances in Research and Applications, Ed. by Z. Pirogov (Nova Science, New York, 2018), p. 61.

    Google Scholar 

  45. Y. Wang, A. Kreisel, V. B. Zabolotnyy, S. V. Borisenko, B. Büchner, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B 88, 174516 (2013).

  46. F. Ahn, I. Eremin, J. Knolle, V. B. Zabolotnyy, S. V. Borisenko, B. Büchner, and A. V. Chubukov, Phys. Rev. B 89, 144513 (2014).

  47. M. M. Korshunov, V. A. Shestakov, and Yu. N. Togushova, J. Magn. Magn. Mater. 440, 133 (2017).

    Article  ADS  Google Scholar 

  48. D. S. Inosov, C. R. Phys. 17, 60 (2016).

    Article  ADS  Google Scholar 

  49. S. A. Kuzmichev and T. E. Kuzmicheva, JETP Lett. 105, 671 (2017).

    Article  ADS  Google Scholar 

  50. S. A. Kuzmichev, T. E. Kuzmicheva, and N. D. Zhigadlo, Eur. Phys. Lett. 119, 17007 (2017).

    Article  ADS  Google Scholar 

  51. T. E. Kuzmicheva, S. A. Kuzmichev, and N. D. Zhigadlo, Phys. Rev. B 100, 144504 (2019).

  52. M. Tortello, D. Daghero, G. A. Ummarino, V. A. Stepanov, J. Jiang, J. D. Weiss, E. E. Hellstrom, and R. S. Gonnelli, Phys. Rev. Lett. 105, 237002 (2010).

  53. Z.-S. Wang, Z.-Y. Wang, H.-Q. Luo, X.-Y. Lu, J. Zhu, C.-H. Li, L. Shan, H. Yang, H.-H. Wen, and C. Ren, Phys. Rev. B 86, 060508(R) (2012).

  54. M. M. Korshunov, V. A. Shestakov, and Yu. N. Togushova, Phys. Rev. B 94, 094517 (2016).

  55. M. M. Korshunov, Phys. Rev. B 98, 104510 (2018).

  56. T. Agatsuma and H. Yamase, Phys. Rev. B 94, 214505 (2016).

  57. H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).

  58. T. Saito, S. Onari, Y. Yamakawa, H. Kontani, S. V. Borisenko, and V. B. Zabolotnyy, Phys. Rev. B 90, 035104 (2014).

  59. T. Saito, Y. Yamakawa, S. Onari, and H. Kontani, Phys. Rev. B 92, 134522 (2015).

  60. A. E. Karakozov, M. V. Magnitskaya, L. S. Kadyrov, and B. P. Gorshunov, Phys. Rev. B 99, 054504 (2019).

  61. A. Bianconi, Nat. Phys. 9, 536 (2013).

    Article  Google Scholar 

  62. A. E. Taylor, M. J. Pitcher, R. A. Ewings, T. G. Perring, S. J. Clarke, and A. T. Boothroyd, Phys. Rev. B 83, 220514(R) (2011).

  63. J. Knolle, V. B. Zabolotnyy, I. Eremin, S. V. Borisenko, N. Qureshi, M. Braden, D. V. Evtushinsky, T. K. Kim, A. A. Kordyuk, S. Sykora, Ch. Hess, I. V. Morozov, S. Wurmehl, R. Moessner, and B. Büchner, Phys. Rev. B 86, 174519 (2012).

  64. A. Kreisel, B. M. Andersen, P. O. Sprau, A. Kostin, J. C. Séamus Davis, and P. J. Hirschfeld, Phys. Rev. B 95, 174504 (2017).

  65. B. H. Min, J. B. Hong, J. H. Yun, T. Iizuka, S.-I. Kimura, Y. Bang, and Y. S. Kwon, New J. Phys. 15, 073029 (2013).

  66. S. A. Kuzmichev, T. E. Kuzmicheva, A. I. Boltalin, and I. V. Morozov, JETP Lett. 98, 722 (2014).

    Article  ADS  Google Scholar 

  67. T. E. Kuzmicheva, S. A. Kuzmichev, I. V. Morozov, S. Wurmehl, and B. Büchner, JETP Lett. 111, 350 (2020).

    Article  ADS  Google Scholar 

  68. S. Chi, R. Aluru, S. Groth, A. Kreisel, U. R. Singh, B. M. Andersen, W. N. Hardy, R. Liang, D. A. Bonn, S. A. Burke, and P. Wahl, Nat. Commun. 8, 15996 (2017).

    Article  ADS  Google Scholar 

  69. S. Chi, S. Grothe, R. Liang, P. Dosanjh, W. N. Hardy, S. A. Burke, D. A. Bonn, and Y. Pennec, Phys. Rev. Lett. 109, 087002 (2012).

  70. M. P. Allan, K. Lee, A. W. Rost, M. H. Fischer, F. Massee, K. Kihou, C.-H. Lee, A. Iyo, H. Eisaki, T.‑M. Chuang, J. C. Davis, and E.-A. Kim, Nat. Phys. 11, 177 (2015).

    Article  Google Scholar 

  71. P. K. Nag, R. Schlegel, D. Baumann, H.-J. Grafe, R. Beck, S. Wurmehl, B. Büchner, and C. Hess, Sci. Rep. 6, 27926 (2016).

    Article  ADS  Google Scholar 

  72. Z. Sun, P. K. Nag, S. Sykora, J. M. Guevara, S. Hoffmann, C. Salazar, T. Hänke, R. Kappenberger, S. Wurmehl, B. Büchner, and C. Hess, Phys. Rev. B 100, 024506 (2019).

  73. Ya. G. Ponomarev, H. H. Van, S. A. Kuzmichev, S. V. Kulbachinskii, M. G. Mikheev, M. V. Sudakova, and S. N. Tchesnokov, JETP Lett. 96, 743 (2012).

    Article  ADS  Google Scholar 

  74. P. J. Hirschfeld, C. R. Phys. 17, 197 (2016).

    Article  ADS  Google Scholar 

  75. R. Yu, J.-X. Zhu, and Q. Si, Phys. Rev. B 89, 024509 (2014).

  76. C. Zhang, H.-F. Li, Y. Song, et al., Phys. Rev. B 88, 064504 (2013).

  77. C. Zhang, R. Yu, Y. Su, Y. Song, M. Wang, G. Tan, T. Egami, J. A. Fernandez-Baca, E. Faulhaber, Q. Si, and P. Dai, Phys. Rev. Lett. 111, 207002 (2013).

  78. C. Zhang, W. Lv, G. Tan, Y. Song, S. V. Carr, S. Chi, M. Matsuda, A. D. Christianson, J. A. Fernandez-Baca, L. W. Harriger, and P. Dai, Phys. Rev. B 93, 174522 (2016).

  79. D. W. Tam, Z. Yin, Y. Xie, W. Wang, M. B. Stone, D. T. Adroja, H. C. Walker, M. Yi, and P. Dai, Phys. Rev. B 102, 054430 (2020).

  80. S. Onari and H. Kontani, Phys. Rev. Res. 2, 042005(R) (2020).

  81. T. Timusk and B. W. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  82. T. Shimojima, T. Sonobe, W. Malaeb, et al., Phys. Rev. B 89, 045501 (2014).

  83. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, JETP Lett. 112, 786 (2020).

    Article  ADS  Google Scholar 

  84. M. P. Allan, A. W. Rost, A. P. Mackenzie, Y. Xie, J. C. Davis, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, and T.-M. Chuang, Science (Washington, DC, U. S.) 336, 563 (2012).

    Article  ADS  Google Scholar 

  85. T. Hanaguri, K. Kitagawa, K. Matsubayashi, Y. Mazaki, Y. Uwatoko, and H. Takagi, Phys. Rev. B 85, 214505 (2012).

  86. Y. J. Song, J. S. Ghim, J. H. Yoon, K. J. Lee, M. H. Jung, H.-S. Ji, J. H. Shim, Y. Bang, and Y. S. Kwon, Eur. Phys. Lett. 94, 57008 (2011).

    Article  ADS  Google Scholar 

  87. H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov, Phys. Rev. B 83, 100502(R) (2011).

  88. D. J. Jang, J. B. Hong, Y. S. Kwon, T. Park, K. Gofryk, F. Ronning, J. D. Thompson, and Y. Bang, Phys. Rev. B 85, 180505(R) (2012).

  89. K. Sasmal, B. Lv, Z. Tang, F. Y. Wei, Y. Y. Xue, A. M. Guloy, and C. W. Chu, Phys. Rev. B 81, 144512 (2010).

  90. U. Stockert, M. Abdel-Hafiez, D. V. Evtushinsky, V. B. Zabolotnyy, A. U. B. Wolter, S. Wurmehl, I. Morozov, R. Klingeler, S. V. Borisenko, and B. Büchner, Phys. Rev. B 83, 224512 (2011).

  91. Y. Imai, H. Takahashi, K. Kitagawa, K. Matsubayashi, N. Nakai, Y. Nagai, Y. Uwatoko, M. Machida, and A. Maeda, J. Phys. Soc. Jpn. 80, 013704 (2011).

  92. J. Fink, J. Nayak, E. D. L. Rienks, J. Bannies, S. Wurmehl, S. Aswartham, I. Morozov, R. Kappenberger, M. A. ElGhazali, L. Craco, H. Rosner, C. Felser, and B. Büchner, Phys. Rev. B 99, 245156 (2019).

  93. Q. Q. Ge, Z. R. Ye, M. Xu, Y. Zhang, J. Jiang, B. P. Xie, Y. Song, C. L. Zhang, P. Dai, and D. L. Feng, Phys. Rev. X 3, 011020 (2013).

  94. P. Cai, X. Zhou, W. Ruan, A. Wang, X. Chen, D.‑H. Lee, and Y. Wang, Nat. Commun. 4, 1596 (2013).

    Article  ADS  Google Scholar 

  95. H. Yang, Z. Wang, D. Fang, S. Li, T. Kariyado, G. Chen, M. Ogata, T. Das, A. V. Balatsky, and H.-H. Wen, Phys. Rev. B 86, 214512 (2012).

  96. S. Y. Zhou, X. C. Hong, X. Qiu, B. Y. Pan, Z. Zhang, X. L. Li, W. N. Dong, A. F. Wang, X. G. Luo, X. H. Chen, and S. Y. Li, Eur. Phys. Lett. 101, 17007 (2013).

    Article  ADS  Google Scholar 

  97. K. Cho, M. A. Tanatar, N. Spyrison, H. Kim, Y. Song, P. Dai, C. L. Zhang, and R. Prozorov, Phys. Rev. B 86, 020508(R) (2012).

Download references

ACKNOWLEDGMENTS

We are grateful to I.V. Morozov for the high-quality LiFeAs samples provided, moral and technical support, and permanent regard, as well as to M.M. Korshunov and V.M. Pudalov for fruitful discussions.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0023-2019-0005, topic “Physics of High-Temperature Superconductors and Novel Quantum Materials”). The experimental IMARE study of LiFeAs with the participation by T.E. Kuzmicheva was supported by the Russian Science Foundation (project no. 19-72-00196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuzmicheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmicheva, T.E., Kuzmichev, S.A. Electronic and Superconducting Properties of the AFeAs (A = Li, Na) Family Alkali-Metal Pnictides: Current Stage of the Research (Brief Review). Jetp Lett. 114, 630–642 (2021). https://doi.org/10.1134/S0021364021220070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021220070

Navigation