Skip to main content
Log in

Optimization of the Readout Fidelity of the Quantum State of an Optical Qubit in the 171Yb+ Ion

  • QUANTUM INFORMATICS
  • Published:
JETP Letters Aims and scope Submit manuscript

A scheme based on a laser cooling system has been proposed to detect the state of an optical qubit in the 171Yb+ ion. Analytical expressions have been derived for the readout fidelity including the dark photon counts and background. The parameters of the experiment have been numerically optimized to minimize the readout infidelity. The upper bound on the fidelity associated with a transient process at the beginning of the measurement procedure has been determined as 99.4%. The characteristic parameters of detection ensuring a sufficient proximity to the upper bound have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B. P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, and C. F. Roos, Phys. Rev. A 93, 1 (2016).

    Article  Google Scholar 

  2. L. A. Akopyan, I. V. Zalivako, K. E. Lakhmanskiy, K. Yu. Khabarova, and N. N. Kolachevsky, JETP Lett. 112, 585 (2020).

    Article  ADS  Google Scholar 

  3. J. S. Chen, K. Wright, N. C. Pisenti, D. Murphy, K. M. Beck, K. Landsman, J. M. Amini, and Y. Nam, Phys. Rev. A 102, 43110 (2020).

    Article  ADS  Google Scholar 

  4. M. K. Joshi, A. Fabre, C. Maier, T. Brydges, D. Kiesenhofer, H. Hainzer, R. Blatt, and C. F. Roos, New J. Phys. 22, 103013 (2020).

  5. M. Niedermayr, K. Lakhmanskiy, M. Kumph, S. Partel, J. Edlinger, M. Brownnutt, and R. Blatt, New J. Phys. 16 (2014).

  6. J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, Nature (London, U.K.) 592, 209 (2021).

    Article  ADS  Google Scholar 

  7. S. M. Brewer, J. S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, Phys. Rev. Lett. 123, 1 (2019).

    Article  Google Scholar 

  8. T. Rosenband, D. B. Hume, P. O. Schmidt, et al., Science (Washington, DC, U. S.) 319, 1808 (2008).

    Article  ADS  Google Scholar 

  9. R. Lange, N. Huntemann, J. M. Rahm, C. Sanner, H. Shao, B. Lipphardt, C. Tamm, S. Weyers, and E. Peik, Phys. Rev. Lett. 126, 11102 (2021).

    Article  ADS  Google Scholar 

  10. V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Häffner, Nat. Phys. 12, 465 (2016).

    Article  Google Scholar 

  11. K. Wright, K. M. Beck, S. Debnath, et al., Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  12. J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe, Nature (London, U. K.) 551, 601 (2017).

    Article  ADS  Google Scholar 

  13. I. Pogorelov, T. Feldker, C. D. Marciniak, et al., PRX Quantum 2, 1 (2021).

    Article  Google Scholar 

  14. P. D. D. Schwindt, Y. Y. Jau, H. Partner, A. Casias, A. R. Wagner, M. Moorman, R. P. Manginell, J. R. Kellogg, and J. D. Prestage, Rev. Sci. Instrum. 87, 053112 (2016).

  15. T. Schneider, E. Peik, and C. Tamm, Phys. Rev. Lett. 94, 230801 (2005).

  16. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).

  17. I. A. Semerikov, K. Yu. Khabarova, I. V. Zalivako, A. S. Borisenko, and N. N. Kolachevsky, Bull. Lebedev Phys. Inst. 45, 337 (2018).

    Article  ADS  Google Scholar 

  18. I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, M. D. Aksenov, K. Yu. Khabarova, and N. N. Kolachevsky, JETP Lett. 114, 53 (2021).

    Article  ADS  Google Scholar 

  19. B. I. Bantysh, A. Yu. Chernyavskii, and Yu. I. Bogdanov, JETP Lett. 111, 512 (2020).

    Article  ADS  Google Scholar 

  20. T. P. Harty, D. T. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas, Phys. Rev. Lett. 113, 2 (2014).

    Article  Google Scholar 

  21. J. P. Gaebler, C. H. Baldwin, S. A. Moses, J. M. Dreiling, C. Figgatt, M. Foss-Feig, D. Hayes, and J. M. Pino, arxiv: 2108.10932 (2021).

  22. M. Acton, K. A. Brickman, P. C. Haljan, P. J. Lee, L. Deslauriers, and C. Monroe, Quantum Inform. Comput. 6, 465 (2006).

    Article  Google Scholar 

  23. P. J. Low, B. M. White, A. A. Cox, M. L. Day, and C. Senko, Phys. Rev. Res. 2, 033128 (2020).

  24. S. Ejtemaee, R. Thomas, and P. C. Haljan, Phys. Rev. A 82, 1 (2010).

    Article  Google Scholar 

  25. D. J. Berkeland and M. G. Boshier, Phys. Rev. A 65, 13 (2002).

    Article  Google Scholar 

  26. I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer Science, Berlin, 2012).

    Google Scholar 

Download references

Funding

The work performed by A.S. Borisenko on the optimization and study of the dependence of the fidelity on various parameters of the experiment was supported by the Russian Foundation for Basic Research (project no. 20-32-90020). The development of the theoretical model of readout performed by the other authors was supported by the Russian Science Foundation (project no. 19-12-00274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Semenin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenin, N.V., Borisenko, A.S., Zalivako, I.V. et al. Optimization of the Readout Fidelity of the Quantum State of an Optical Qubit in the 171Yb+ Ion. Jetp Lett. 114, 486–492 (2021). https://doi.org/10.1134/S0021364021200108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021200108

Navigation