Skip to main content
Log in

On an Unconventional Approach to the Improvement of Plasma Confinement in Tokamaks

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

A conceptual proposal has been suggested to improve the confinement of a turbulent plasma in tokamaks with the use of discharges with large safety factors qL at the plasma edge. A number of experiments that were performed with increased safety factors qL at tokamaks of different scales and indicated the improvement of the confinement of the plasma in such regimes have been analyzed. The computer simulation of the evolution of the turbulent plasma, including the transition from the ohmic stage to the stage of intense heating by the electron cyclotron resonance method, has been performed for three discharges with the plasma parameters characteristic of the Т-10 tokamak and qL from 3 to 8.5. This simulation has confirmed that the confinement of the plasma can be improved and its parameters can be increased at large qL values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. ITER Phys. Basis Editors, Nucl. Fusion 39, 2137 (1999).

    Article  Google Scholar 

  2. B. Coppi, Comm. Plasma Phys. Control. Fusion 5, 261 (1980).

    Google Scholar 

  3. Yu. V. Esiptchuk and K. A. Razumova, Plasma Phys. Control. Fusion 28, 1253 (1986).

    Article  ADS  Google Scholar 

  4. K. A. Razumova, V. F. Andreev, A. J. H. Donne, G. M. D. Hogeweij, S. E. Lysenko, D. A. Shelukhin, G. W. Spakman, V. A. Vershkov, and V. A. Zhuravlev, Plasma Phys. Control. Fusion 48, 1373 (2006).

    Article  ADS  Google Scholar 

  5. K. A. Razumova, V. F. Andreev, A. Yu. Dnestrovskij, A. Ya. Kislov, N. A. Kirneva, S. E. Lysenko, Yu. D. Pavlov, V. I. Poznyak, T. V. Shafranov, E. V. Trukhina, V. A. Zhuravlev, A. J. H. Donne, G. M. D. Hogeweij, the T-10 Team, and the RTP Team, Plasma Phys. Control. Fusion 50, 105004 (2008).

  6. K. A. Razumova, V. F. Andreev, A. Ya. Kislov, N. A. Kirneva, S. E. Lysenko, Yu. D. Pavlov, T. V. Shafranov, the T-10 Team, A. J. H. Donne, G. M. D. Hogeweij, G. W. Spakman, R. Jaspers, the TEXTOR team, M. Kantor, and M. Walsh, Nucl. Fusion 49, 065011 (2009).

  7. D. Biscamp, Comm. Plasma Phys. Control. Fusion 10, 165 (1986).

    Google Scholar 

  8. B. B. Kadomtsev, Sov. J. Plasma Phys. 13, 443 (1987).

    Google Scholar 

  9. Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, S. E. Lysenko, S. V. Cherkasov, and M. J. Walsh, Plasma Phys. Rep. 30, 1 (2004).

    Article  ADS  Google Scholar 

  10. Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, and S. E. Lysenko, Plasma Phys. Rep. 31, 529 (2005).

    Article  ADS  Google Scholar 

  11. V. V. Yan’kov, JETP Lett. 60, 171 (1994).

    ADS  Google Scholar 

  12. V. V. Yankov and J. Nycander, Phys. Plasmas 4, 2907 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. P. Pastukhov and N. V. Chudin, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, 2008, Report TH/P8-26.

  14. V. P. Pastukhov and N. V. Chudin, JETP Lett. 90, 651 (2009).

    Article  ADS  Google Scholar 

  15. V. P. Pastukhov and N. V. Chudin, in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, 2010, Report THC/P4-22.

  16. V. P. Pastukhov, N. V. Chudin, and D. V. Smirnov, Plasma Phys. Control. Fusion 53, 054015 (2011).

  17. V. P. Pastukhov and D. V. Smirnov, Plasma Phys. Rep. 42, 307 (2016).

    Article  ADS  Google Scholar 

  18. V. P. Pastukhov, N. A. Kirneva, and D. V. Smirnov, Plasma Phys. Rep. 45, 1099 (2019).

    Article  ADS  Google Scholar 

  19. M. M. Shoucri, I. P. Shkarofsky, G. W. Pacher, et al., Nucl. Fusion 30, 2563 (1990).

    Article  Google Scholar 

  20. N. V. Sakharov, T. Yu. Akatova, L. G. Askinazi, et al., Plasma Phys. Control. Fusion 35, 411 (1993).

    Article  ADS  Google Scholar 

  21. S. A. Sabbagh, R. A. Gross, M. E. Mauel, et al., Phys. Fluids B 3, 2277 (1991).

    Article  ADS  Google Scholar 

  22. M. F. F. Nave, P. J. Lomas, G. T. A. Huysmans, B. Alper, D. Borba, B. de Esch, C. W. Gowers, H. Y. Guo, T. T. C. Jones, M. Keilhacker, V. V. Parail, F. G. Rimini, B. Schunke, P. Smeulders, and P. R. Thomas, Nucl. Fusion 39, 1567 (1999).

    Article  ADS  Google Scholar 

  23. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, et al., Nucl. Fusion 61, 064001 (2021).

Download references

ACKNOWLEDGMENTS

This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute,” http://ckp.nrcki.ru/. We are grateful to V.V. Yankov for useful discussions, as well as to N.A. Kirneva and N.V. Kasyanova for providing data on T-10 experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Pastukhov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, V.P., Smirnov, D.V. On an Unconventional Approach to the Improvement of Plasma Confinement in Tokamaks. Jetp Lett. 114, 208–214 (2021). https://doi.org/10.1134/S0021364021160086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021160086

Navigation