Skip to main content
Log in

Nonresonant Effects in the Two-Photon Spectroscopy of a Hydrogen Atom: Application to the Calculation of the Charge Radius of the Proton

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

A discrepancy of 4σ (σ is the standard deviation) between the proton radii obtained by measuring transition frequencies in electron (H) and muonic (µH) hydrogen atoms has been actively discussed in the last decade. Theoretical and experimental efforts are focused on the test of this discrepancy and search for effects removing it. Recent measurements of the 2s–4p transition and the Lamb shift in the electron hydrogen atom approach the solution of the “proton radius puzzle.” The rms proton radius rp calculated from these experimental data is 0.8335(95) fm, which is in agreement within the indicated errors with a value of 0.84087(39) fm obtained from experiment with muon hydrogen. This agreement between the results has been achieved by including interference effects appearing in the processes of single-photon scattering on the hydrogen atom, whereas experiments on muonic hydrogen are insensitive to these effects. However, the charge radius of the proton cannot be calculated taking into account only single-photon transitions and measured frequencies corresponding to two-photon transitions should be taken into account. In this work, it has been shown that interference effects in the 2snd transitions in the hydrogen atom can make a significant contribution to the determination of the charge radius of the proton and Rydberg constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. https://physics.nist.gov/cuu/Constants/index.html.

REFERENCES

  1. R. Pohl, A. Antognini, F. Nez, et al., Nature (London, U.K.) 466, 213 (2010).

    Article  ADS  Google Scholar 

  2. P. J. Mohr, D. B. Newell, and B. N. Taylor, J. Phys. Chem. Ref. Data 45, 043102 (2016).

  3. P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).

  4. J. C. Bernauer, M. O. Distler, J. Friedrich, et al., Phys. Rev. C 90, 015206 (2014).

  5. A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour, D. C. Yost, T. W. Hänsch, N. Kolachevsky, and T. Udem, Science (Washington, DC, U. S.) 358, 79 (2017).

    Article  ADS  Google Scholar 

  6. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C. Vutha, and E. A. Hessels, Science (Washington, DC, U. S.) 365, 1007 (2019).

    Article  ADS  Google Scholar 

  7. W. Xiong, A. Gasparian, H. Gao, et al., Nature (London, U.K.) 575, 11 (2019).

    Article  Google Scholar 

  8. A. Matveev, C. G. Parthey, K. Predehl, et al., Phys. Rev. Lett. 110, 230801 (2013).

  9. F. Low, Phys. Rev. 88, 53 (1952).

    Article  ADS  Google Scholar 

  10. L. Labzowsky, V. Karasiev, and I. Goidenko, J. Phys. B: At. Mol. Opt. Phys. 27, L439 (1994).

    Article  ADS  Google Scholar 

  11. L. N. Labzowsky, I. A. Goidenko, and D. Liesen, Phys. Scr. 56, 271 (1997).

    Article  ADS  Google Scholar 

  12. L. N. Labzowsky, D. A. Solovyev, G. Plunien, and G. Soff, Phys. Rev. Lett. 87, 143003 (2001).

  13. L. Labzowsky, D. Solovyev, G. Plunien, and G. Soff, Can. J. Phys. 80, 1187 (2002).

    Article  ADS  Google Scholar 

  14. L. Labzowsky, D. Soloviev, G. Plunien, and G. Soff, Phys. Rev. A 65, 054502 (2002).

  15. L. Labzowsky, G. Schedrin, D. Solovyev, and G. Plunien, Phys. Rev. Lett. 98, 2030032 (2007).

  16. L. Labzowsky, G. Schedrin, D. Solovyev, E. Chernovskaya, G. Plunien, and S. Karshenboim, Phys. Rev. A 79, 052506 (2009).

  17. U. D. Jentschura and P. J. Mohr, Can. J. Phys. 80, 633 (2002).

    Article  ADS  Google Scholar 

  18. M. Horbatsch and E. A. Hessels, Phys. Rev. A 82, 052519 (2010).

  19. M. Horbatsch and E. A. Hessels, Phys. Rev. A 84, 032508 (2011).

  20. C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, Phys. Rev. Lett. 107, 023001 (2011).

  21. R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, Phys. Rev. A 87, 032504 (2013).

  22. A. Marsman, M. Horbatsch, and E. A. Hessels, J. Phys. Chem. Ref. Data 44, 031207 (2015).

  23. P. Amaro, F. Fratini, L. Safari, A. Antognini, P. Indelicato, R. Pohl, and J. P. Santos, Phys. Rev. A 92, 062506 (2015).

  24. P. Amaro, B. Franke, J. J. Krauth, M. Diepold, F. Fratini, L. Safari, J. Machado, A. Antognini, F. Kottmann, P. Indelicato, R. Pohl, and J. P. Santos, Phys. Rev. A 92, 022514 (2015).

  25. T. Udem, L. Maisenbacher, A. Matveev, V. Andreev, A. Grinin, A. Beyer, N. Kolachevsky, R. Pohl, D. C. Yost, and T. W. Hänsch, Ann. Phys. 531, 1900044 (2019).

  26. D. Solovyev, A. Anikin, T. Zalialiutdinov, and L. Labzowsky, J. Phys. B: At. Mol. Opt. Phys. 53, 125002 (2020).

  27. A. Antognini, F. Nez, K. Schuhmann, et al., Science (Washington, DC, U. S.) 339, 417 (2013).

    Article  ADS  Google Scholar 

  28. A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez, and R. Pohl, Ann. Phys. 331, 127 (2013).

    Article  ADS  Google Scholar 

  29. S. Romanov, Eur. Phys. J. D 33, 17 (1995).

    Google Scholar 

  30. K. Pachucki, Phys. Rev. A 53, 2092 (1996).

    Article  ADS  Google Scholar 

  31. A. Martynenko, Phys. At. Nucl. 71, 125 (2008).

    Article  Google Scholar 

  32. S. G. Karshenboim, E. Y. Korzinin, V. A. Shelyuto, and V. G. Ivanov, J. Phys. Chem. Ref. Data 44, 031202 (2015).

  33. L. Labzowsky, D. Solovyev, V. Sharipov, G. Plunien, and G. Soff, J. Phys. B: At. Mol. Opt. Phys. 36, L227 (2003).

    Article  ADS  Google Scholar 

  34. A. Anikin, T. Zalialiutdinov, and D. Solovyev, Phys. Rev. A 103, 022833 (2021).

  35. M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, W. Vassen, C. Zimmermann, K. Pachucki, T. W. Hänsch, L. Julien, and F. Biraben, Phys. Rev. A 52, 2664 (1995).

    Article  ADS  Google Scholar 

  36. B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, Phys. Rev. Lett. 78, 440 (1997).

    Article  ADS  Google Scholar 

  37. C. Schwob, L. Jozefowski, O. Acef, L. Hilico, B. de Beauvoir, F. Nez, L. Julien, A. Clairon, and F. Biraben, IEEE Trans. Instrum.Meas. 48, 178 (1999).

    Article  Google Scholar 

  38. C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, J.-J. Zondy, and A. Clairon, Phys. Rev. Lett. 82, 4960 (1999).

    Article  ADS  Google Scholar 

  39. B. de Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilico, F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D 12, 61 (2000).

    Article  ADS  Google Scholar 

  40. O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. Solovyev, Phys. Rep. 455, 135 (2008).

    Article  ADS  Google Scholar 

  41. T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and G. Plunien, Phys. Rep. 737, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Horbatsch and E. A. Hessels, Phys. Rev. A 93, 022513 (2016).

  43. E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 93, 025010 (2021).

  44. F. Nez, M. D. Plimmer, S. Bourzeix, L. Julien, F. Biraben, R. Felder, O. Acef, J. J. Zondy, P. Laurent, A. Clairon, M. Abed, Y. Millerioux, and P. Juncar, Phys. Rev. Lett. 69, 2326 (1992).

    Article  ADS  Google Scholar 

  45. A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl, T. W. Hänsch, and T. Udem, Science (Washington, DC, U. S.) 370, 1061 (2020).

    Article  ADS  Google Scholar 

  46. D. C. Yost, A. Matveev, E. Peters, A. Beyer, T. W. Hänsch, and T. Udem, Phys. Rev. A 90, 012512 (2014).

  47. H. Fleurbaey, F. Biraben, L. Julien, J.-P. Karr, and F. Nez, Phys. Rev. A 95, 052503 (2017).

  48. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-72-00003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anikin.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.A., Zalialiutdinov, T.A. & Solovyev, D.A. Nonresonant Effects in the Two-Photon Spectroscopy of a Hydrogen Atom: Application to the Calculation of the Charge Radius of the Proton. Jetp Lett. 114, 180–187 (2021). https://doi.org/10.1134/S0021364021160037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021160037

Navigation