Skip to main content
Log in

Low-Threshold Parametric Excitation of Electron Plasma Waves Localized in the Edge Transport Barrier of a Tokamak during Electron Cyclotron Resonance Heating of a Plasma

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The possibility of the localization of longitudinal waves in the intermediate frequency range in the edge transport barrier of a toroidal nuclear fusion facility is discovered. It is shown that such localized waves can be excited at the parametric decay of sub-megawatt ordinary microwave beams in experiments on electron cyclotron resonance heating of a plasma, which leads to the generation of anomalously scattered waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. J. Kaup, A. Reiman, and A. Bers, Rev. Mod. Phys. 51, 275 (1979).

    Article  ADS  Google Scholar 

  2. A. D. Piliya, in Proceedings of the 10th International Conference on Phenomena in Ionized Gases, Septem-ber 13–18, 1971, Oxford, UK, Ed. by R. N. Franklin (Donald Parsons and Co., Oxford, 1971), p. 320.

  3. M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).

    Article  ADS  Google Scholar 

  4. T. B. Leyser, Phys. Plasmas 1, 2003 (1994).

    Article  ADS  Google Scholar 

  5. O. N. Krokhin, V. V. Pustovalov, A. A. Rupasov, V. P. Silin, G. V. Sklizkov, A. N. Starodub, V. T. Tikhonchuk, and A. S. Shikanov, Sov. Phys. JETP Lett. 22, 21 (1975).

    ADS  Google Scholar 

  6. B. I. Cohen, R. H. Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys. 63, 949 (1991).

    Article  ADS  Google Scholar 

  7. A. G. Litvak, A. M. Sergeev, E. V. Suvorov, M. D. Tokman, and I. V. Khazanov, Phys. Fluids B 5, 4347 (1993).

    Article  ADS  Google Scholar 

  8. E. Westerhof, S. K. Nielsen, J. W. Oosterbeek, M. Salewski, M. R. De Baar, W. A. Bongers, A. Bürger, B. A. Hennen, S. B. Korsholm, F. Leipold, D. Moseev, M. Stejner, and D. J. Thoen (the TEXTOR Team), Phys. Rev. Lett. 103, 125001 (2009).

  9. S. Coda (for the TCV Team), Nucl. Fusion 55, 104004 (2015).

  10. S. K. Hansen, S. K. Nielsen, J. Stober, J. Rasmussen, M. Stejner, M. Hoelzl, T. Jensen, and the ASDEX U-pgrade Team, Nucl. Fusion 60, 106008 (2020).

  11. B. van Milligen, B. A. Carreras, C. Hidalgo, A. Cappa, and the TJ-II, Phys. Plasmas 25, 062503 (2018).

  12. Yu. N. Dnestrovskij, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Melnikov, A. R. Nemets, M. R. Nurgaliev, G. F. Subbotin, N. A. Solovev, D. Yu. Sychugov, and S. V. Cherkasov, Plasma Phys. Control. Fusion 63, 055012 (2021).

  13. E. Z. Gusakov and A. Yu. Popov, Phys. Rev. Lett. 105, 115003 (2010).

  14. E. Gusakov and A. Popov, Europhys. Lett. 99, 15001 (2012).

    Article  ADS  Google Scholar 

  15. A. Yu. Popov and E. Z. Gusakov, Plasma Phys. Control. Fusion 57, 025022 (2015).

  16. A. Yu. Popov and E. Z. Gusakov, Europhys. Lett. 116, 45002 (2016).

    Article  ADS  Google Scholar 

  17. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 23, 082503 (2016).

  18. E. Z. Gusakov, A. Yu. Popov, and P. V. Tretinnikov, Nucl. Fusion 59, 106040 (2019).

  19. E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 60, 076018 (2020).

  20. E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 60, 076018 (2020).

  21. E. Z. Gusakov and A. Yu. Popov, Phys. Usp. 63, 365 (2020).

    Article  ADS  Google Scholar 

  22. E. Z. Gusakov, M. A. Irzak, and A. D. Piliya, JETP Lett. 65, 25 (1997).

    Article  ADS  Google Scholar 

  23. E. Z. Gusakov, V. V. Dyachenko, M. A. Irzak, O. N. Shcherbinin, and S. A. Khitrov, Plasma Phys. Control. Fusion 52, 075018 (2010).

  24. C. Mazzotta, O. Tudisco, A. Canton, P. Innocente, M. de Benedetti, E. Giovannozzi, D. Marocco, P. Micozzi, G. Monari, and G. Rocchi, Phys. Scr. T 123, 79 (2006).

    Article  ADS  Google Scholar 

  25. V. G. Petrov, A. A. Petrov, A. Yu. Malyshev, M. de Benedetti, and O. Tudisco, Plasma Phys. Rep. 34, 24 (2008).

    Article  ADS  Google Scholar 

  26. E. Z. Gusakov and V. I. Fedorov, Sov. J. Plasma Phys. 5, 263 (1979).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state contract no. 0040-2019-0023, theoretical analysis of parametric decay instabilities, and state contract no. 0034-2021-0003, numerical simulation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Popov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusakov, E.Z., Popov, A.Y. Low-Threshold Parametric Excitation of Electron Plasma Waves Localized in the Edge Transport Barrier of a Tokamak during Electron Cyclotron Resonance Heating of a Plasma. Jetp Lett. 114, 138–142 (2021). https://doi.org/10.1134/S0021364021150042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021150042

Navigation