Skip to main content
Log in

Microdomain Engineering in Waveguide and Layered Structures Based on Ferroelectrics for Applications in Photonic Elements (Brief Review)

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Studies of ferroelectric nano- and microdomain structures formed in LiNbO3-based optical waveguides are reviewed. Nanodomain structures of a given configuration have been written in an LNOI (LiNbO3-on-insulator) waveguide sandwich with the polar (Z) orientation by the field of an atomic force microscope tip and their properties have been studied. The static conductivity σDW of domain walls has been detected and estimated by an original method based on the characteristics of the atomic force microscopy writing of domains. The estimated value σDW ≈ 8 × 10–4 (Ω cm)–1 is at least 12 orders of magnitude higher than the bulk conductivity of LiNbO3. Microdomain gratings with given periods have been written in He:LiNbO3 and Ti:LiNbO3 planar optical waveguides formed on nonpolar (X and Y) surfaces of a crystal by the electron beam method. Studies of the nonlinear optical conversion of radiation in written structures have demonstrated that the optimal characteristics of the waveguide conversion to the second harmonic are reached when the depth of written domains Td corresponds to the thickness of the waveguide layer. The depth Td is specified by the accelerating voltage U of a scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. M. Vul, G. M. Guro, and I. I. Ivanchik, Ferroelectrics 6, 29 (1973).

    Article  Google Scholar 

  2. A. Aird and E. K. H. Salje, J. Phys.: Condens. Matter 10, L377 (1998).

    ADS  Google Scholar 

  3. J. Seidel, L. W. Martin, Q. He, et al., Nat. Mater. 8, 229 (2009).

    Article  ADS  Google Scholar 

  4. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).

    Article  ADS  Google Scholar 

  5. P. S. Bednyakov, B. I. Sturman, T. Sluka, A. K. Tagantsev, and P. V. Yudin, npj Comput. Mater. 4, 65 (2018).

    Google Scholar 

  6. M. Rusing, P. O. Weigel, J. Zhao, and S. Mookhrjea, IEEE Nanotechnol. Mag. 13, 18 (2019).

    Article  Google Scholar 

  7. C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soergel, C. Razzaghi, and I. Breunig, Sci. Rep. 7, 9862 (2017).

    Article  ADS  Google Scholar 

  8. B. Wolba, J. Seidel, C. Cazorla, C. Godau, A. Haußmann, and L. M. Eng, Adv. Electron. Mater. 4, 1700242 (2018).

  9. N. Bloembergen, Nonlinear Optics (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  10. V. G. Zalessky and S. O. Fregatov, Phys. B (Amsterdam, Neth.) 371, 158 (2006).

  11. T. R. Volk, R. V. Gainutdinov, Ya. V. Bodnarchuk, and L. I. Ivleva, JETP Lett. 97, 473 (2013).

    Article  ADS  Google Scholar 

  12. R. V. Gainutdinov, T. R. Volk, and H. Zhang, Appl. Phys. Lett. 107, 162903 (2015).

  13. T. R. Volk, R. V. Gainutdinov, and H. Zhang, Appl. Phys. Lett. 110, 132905 (2017).

  14. T. R. Volk, R. V. Gainutdinov, and H. Zhang, Crystals 7, 137 (2017).

    Article  Google Scholar 

  15. R. Gainutdinov and T. Volk, Crystals 10, 1160 (2020).

    Article  Google Scholar 

  16. L. S. Kokhanchik, M. V. Borodin, S. M. Shandarov, N. I. Burimov, V. V. Shcherbina, and T. R. Volk, Phys. Solid State 52, 1722 (2010).

    Article  ADS  Google Scholar 

  17. L. S. Kokhanchik, M. V. Borodin, N. I. Burimov, S. M. Shandarov, V. V. Shcherbina, and T. R. Volk, IEEE Trans. Ultrason., Ferroelectr. Waveguide Appl. 59, 1076 (2012).

    Google Scholar 

  18. T. R. Volk, L. S. Kokhanchik, R. V. Gainutdinov, Ya. V. Bodnarchuk, S. M. Shandarov, M. V. Borodin, S. D. Lavrov, H. L. Liu, and F. Chen, IEEE J. Lightwave Technol. 33, 4761 (2015).

    Article  ADS  Google Scholar 

  19. D. Lavrov, L. S. Kokhanchik, R. V. Gainutdinov, A. S. Elshin, Ya. V. Bodnarchuk, E. D. Mishina, and T. R. Volk, Opt. Mater. 75, 325 (2018).

    Article  ADS  Google Scholar 

  20. S. M. Shandarov, L. S. Kokhanchik, T. R. Volk, E. N. Savchenkov, and M. V. Borodin, Quantum Electron. 48, 761 (2018).

    Article  ADS  Google Scholar 

  21. A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, New York, 2010).

    Book  Google Scholar 

  22. A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, Scanning Probe Microscopy. Electricaland Electromechanical Phenomena at the Nanoscale (Springer, New York, 2007).

    Google Scholar 

  23. L. S. Kokhanchik and D. V. Punegov, Ferroelectrics 373, 69 (2008).

    Article  Google Scholar 

  24. L. S. Kokhanchik, M. V. Borodin, S. M. Shandarov, N. I. Burimov, V. V. Shcherbina, and T. R. Volk, Phys. Solid State 52, 1722 (2010).

    Article  ADS  Google Scholar 

  25. L. S. Kokhanchik, R. V. Gainutdinov, E. D. Mishina, S. D. Lavrov, and T. R. Volk, Appl. Phys. Lett. 105, 142901 (2014).

  26. L. S. Kokhanchik, R. V. Gainutdinov, S. D. Lavrov, E. D. Mishina, and T. R. Volk, Ferroelectrics 480, 49 (2015).

    Article  Google Scholar 

  27. L. S. Kokhanchik, R. V. Gainutdinov, S. D. Lavrov, and T. R. Volk, J. Appl. Phys. 118, 072001 (2015).

  28. L. S. Kokhanchik, R. V. Gainutdinov, and T. R. Volk, Phys. Solid State 57, 949 (2015).

    Article  ADS  Google Scholar 

  29. T. R. Volk, L. S. Kokhanchik, R. V. Gainutdinov, Y. V. Bodnarchuk, and S. D. Lavrov, J. Adv. Dielectr. 8, 2 (2018).

    Article  Google Scholar 

  30. S. Kurimura and Y. J. Uesu, Appl. Phys. Lett. 81, 369 (1997).

    Google Scholar 

  31. J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Pa-ruch, Adv. Mater. 23, 5377 (2011).

    Article  Google Scholar 

  32. A. Ofan, M. Lilienblum, O. Gaathon, A. Sehrbrock, A. Hoffmann, S. Bakhru, H. Bakhru, S. Irsen, R. M. Osgood, Jr., and E. Soergel, Nanotechnology 22, 285309 (2011).

  33. Y. Kan, H.-F. Bo, X.-M. Lu, T.-T. Xu, Y. M. Jin, X. Wu, F. Huang, and J. Zhu, Appl. Phys. Lett. 97, 202903 (2010).

  34. V. Ievlev, S. Jesse, A. N. Morozovska, E. Strelcov, E. A. Eliseev, Y. V. Pershin, A. Kumar, V. Ya. Shur, and S. V. Kalinin, Nat. Phys. 10, 59 (2014).

    Article  Google Scholar 

  35. V. A. Sychugov and I. Čtyroký, Sov. J. Quantum Electron. 12, 252 (1982).

    Article  ADS  Google Scholar 

  36. R. V. Schmidt and I. P. Kaminov, Appl. Phys. Lett. 25, 458 (1974).

    Article  ADS  Google Scholar 

  37. Th. Tamir, Guided-Wave Optoelectronics (Springer, Berlin, 1988).

    Book  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (project nos. 16-29-11777-ofi_m, 16-29-14046-ofi_m, and 16-02-00439_a). T.R. Volk, R.V. Gainutdinov, and Ya.V. Bodnarchuk acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation (state assignment for the Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences) for the study of structures written in He+-LiNbO3. Ya.V. Bodnarchuk acknowledges the support of the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-1675.2021.1.2) for the calculation of exposure dependences in the He+-Li-NbO3 waveguide. S.M. Shandarov acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation (state assignment no. FEWM-2020-0038/3 for 2020–2022) for the analysis of the efficiency of the SHG waveguide geometry in the planar waveguide with the exponential refractive index profile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Bodnarchuk.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volk, T.R., Bodnarchuk, Y.V., Gainutdinov, R.V. et al. Microdomain Engineering in Waveguide and Layered Structures Based on Ferroelectrics for Applications in Photonic Elements (Brief Review). Jetp Lett. 113, 769–779 (2021). https://doi.org/10.1134/S0021364021120122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021120122

Navigation