Skip to main content
Log in

Interface in Ag2S/ZnS Nanoheterostructures

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The structure of Ag2S/ZnS nanoheterostructures has been analyzed taking into account the morphology and elastic properties of Ag2S and ZnS sulfide single crystal particles. The arrangement of S atoms in (111) planes of cubic argentite β-Ag2S and sphalerite ZnS has been considered. The elastic stiffness constants \({{c}_{{11}}}\), \({{c}_{{12}}}\), and \({{c}_{{44}}}\) of cubic argentite and sphalerite at a temperature of 300 K has been estimated. It has been shown that the formation of Ag2S/ZnS heterostructures where the interface is formed by the (111) planes of cubic sphalerite ZnS and argentite β-Ag2S is the most probable morphologically and energetically. The calculated universal criterion of the anisotropy of the elastic properties has shown that the studied cubic silver and zinc sulfides are elastically anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, and G. Shen, Crit. Rev. Solid State Mater. Sci. 38, 57 (2013).

    Article  ADS  Google Scholar 

  2. G. Murugadoss, R. Jayavel, M. Rajesh Kumar, and R. Thangamuthu, Appl. Nanosci. 6, 503 (2016).

    Article  ADS  Google Scholar 

  3. S. I. Sadovnikov, A. V. Ishchenko, and I. A. Weinstein, J. Alloys Compd. 831, 154846 (2020).

  4. S. I. Sadovnikov and I. A. Balyakin, Comp. Mater. Sci. 184, 109821 (2020).

  5. S. I. Sadovnikov, A. V. Ishchenko, and I. A. Weinstein, Russ. J. Inorg. Chem. 65, 1312 (2020).

    Article  Google Scholar 

  6. X. Zhang, X. Liu, L. Zhang, D. Li, and S. Liu, J. Alloys Compd. 655, 38 (2016).

    Article  Google Scholar 

  7. S. I. Sadovnikov and I. D. Popov, Phys. Solid State 62, 2004 (2020).

    Article  ADS  Google Scholar 

  8. M. Bilge, S. O. Kart, and H. H. Kart, Mater. Chem. Phys. 111, 559 (2008).

    Article  Google Scholar 

  9. R. Chen, X. F. Li, L. C. Cai, and J. Zhu, Solid State Commun. 139, 246 (2006).

    Article  ADS  Google Scholar 

  10. D. Wei, S. Jin-Fan, W. Ping, L. Cheng, L. Zhi-Wen, and T. Xiao-Ming, Z. Naturforsch. 66a, 656 (2011).

  11. G. Ulian and G. Valdre, Acta Crystallogr., B 75, 1042 (2019).

    Article  Google Scholar 

  12. S. I. Sadovnikov, JETP Lett. 112, 193 (2020).

    Article  ADS  Google Scholar 

  13. S. I. Sadovnikov and A. I. Gusev, Phys. Chem. Chem. Phys. 23, 2914 (2021).

    Article  Google Scholar 

  14. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).

    Article  Google Scholar 

  15. S. I. Sadovnikov and A. I. Gusev, J. Exp. Theor. Phys. 129, 1005 (2019).

    Article  ADS  Google Scholar 

  16. A. J. Frueh, Z. Kristallogr. 110, 136 (1958).

    Article  Google Scholar 

  17. R. Sadanaga and S. Sueno, Mineralog. J. Jpn. 5, 124 (1967).

    Google Scholar 

  18. P. Hartman and W. G. Perdok, Acta Crystallogr. 8, 49 (1955).

    Article  Google Scholar 

  19. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  20. T. Gnäupel-Herold, P. C. Brand, and H. J. Prask, J. Appl. Crystallogr. 31, 929 (1998).

    Article  Google Scholar 

  21. A. G. Knapton, J. Less-Comm. Met. 2, 113 (1960).

    Google Scholar 

  22. S.-H. Na and C.-H. Park, J. Korean Phys. Soc. 54, 867 (2009).

    Article  ADS  Google Scholar 

  23. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  ADS  Google Scholar 

  24. S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

  25. O. L. Anderson, in Physical Acoustics. Principles and Methods, Ed. by W. P. Mason (Academic, New York, 1965).

    Google Scholar 

Download references

Funding

This work performed at the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, was supported by the Russian Science Foundation (project no. 19-79-10101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I., Gusev, A.I. Interface in Ag2S/ZnS Nanoheterostructures. Jetp Lett. 113, 706–712 (2021). https://doi.org/10.1134/S0021364021110072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021110072

Navigation