Skip to main content
Log in

Calculations of the Fragility of High-Entropy Bulk Metallic Glasses Using the Data on Shear Elasticity Relaxation

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A method for calculating the fragility of high-entropy bulk metallic glasses using the data on shear elasticity relaxation in the supercooled liquid range is suggested and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. M. Martinez and C. A. Angell, Nature (London, U.K.) 410, 663 (2001).

    Article  ADS  Google Scholar 

  2. G. McKenna, Nat. Phys. 4, 673 (2008).

    Article  Google Scholar 

  3. S. V. Nemilov, Zh. Prikl. Khim. 37, 293 (1964).

    Google Scholar 

  4. C. A. Angell, J. Phys. Chem. Solids 49, 863 (1988).

    Article  ADS  Google Scholar 

  5. C. A. Angell, Science (Washington, DC, U. S.) 267, 1924 (1995).

    Article  ADS  Google Scholar 

  6. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  ADS  Google Scholar 

  7. D. S. Sanditov and M. I. Ojovan, Phys. Usp. 62, 111 (2019).

    Article  ADS  Google Scholar 

  8. R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  ADS  Google Scholar 

  9. V. N. Novikov and A. P. Sokolov, Nature (London, U.K.) 431, 961 (2004).

    Article  ADS  Google Scholar 

  10. E. S. Park, J. H. Na, and D. H. Kim, Appl. Phys. Lett. 91, 031907 (2007).

  11. R. J. Xue, L. Z. Zhao, M. X. Pan, B. Zhang, and W. H. Wang, J. Non-Cryst. Solids 425, 153 (2015).

    Article  ADS  Google Scholar 

  12. D. L. Sidebottom, J. Non-Cryst. Solids 524, 119641 (2015).

  13. M. H. Tsai and J. W. Yeh, Mater. Res. Lett. 4, 515 (2014).

    Google Scholar 

  14. Y. Chen, Z. W. Dai, and J. Z. Jiang, J. Alloys Compd. 866, 158852 (2021).

  15. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  16. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).

    Article  ADS  Google Scholar 

  17. S. V. Nemilov, Zh. Fiz. Khim. 42, 391 (1968).

    Google Scholar 

  18. S. V. Nemilov, J. Non-Cryst. Solids 352, 2715 (2006).

    Article  ADS  Google Scholar 

  19. J. C. Dyre, N. B. Olsen, and T. Christensen, Phys. Rev. B 53, 2171 (1996).

    Article  ADS  Google Scholar 

  20. V. A. Khonik, Yu. P. Mitrofanov, S. A. Lyakhov, A. N. Vasiliev, S. V. Khonik, and D. A. Khoviv, Phys. Rev. B 79, 132204 (2009).

  21. W. W. Wang, Prog. Mater. Sci. 57, 487656 (2012).

  22. V. A. Khonik and N. P. Kobelev, Metals 9, 605 (2019).

    Article  Google Scholar 

  23. V. A. Khonik, J. Alloys Compd. 853, 157067 (2021).

  24. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  25. A. V. Granato, Eur. J. Phys. 87, 18 (2014).

    Article  ADS  Google Scholar 

  26. N. P. Kobelev and V. A. Khonik, J. Non-Cryst. Solids 427, 184 (2015).

    Article  ADS  Google Scholar 

  27. A. V. Granato, J. Non-Cryst. Solids 352, 4821 (2006).

    Article  ADS  Google Scholar 

  28. H. Y. Ding, Y. Shao, P. Gong, J. F. Li, and K. F. Yao, Mater. Lett. 125, 151 (2014).

    Article  Google Scholar 

  29. T. Wada, J. Jiang, K. Yubuta, H. Kato, and A. Takeuchi, Materialia 7, 100372 (2019).

  30. L. T. Zhang, Y. J. Duan, T. Wada, H. Kato, J. M. Pelletier, D. Crespo, E. Pineda, and J. C. Qiao, J. Mater. Sci. Technol. 83, 248 (2021).

    Article  Google Scholar 

  31. A. N. Vasil’ev and Yu. P. Gaidukov, Sov. Phys. Usp. 26, 952 (1983).

    Article  ADS  Google Scholar 

  32. A. S. Makarov, E. V. Goncharova, G. V. Afonin, J. C. Qiao, N. P. Kobelev, and V. A. Khonik, JETP Lett. 111, 586 (2020).

    Article  ADS  Google Scholar 

  33. M. Yang, X. J. Liu, Y. Wu, H. Wang, X. Z. Wang, and Z. P. Lu, Mater. Res. Lett. 6, 495 (2018).

    Article  Google Scholar 

  34. P. Si, X. Bian, J. Zhang, H. Li, M. Sun, and Y. Zhao, J. Phys.: Condens. Matter 15, 5409 (2003).

    ADS  Google Scholar 

  35. L. Hu, X. Bian, W. Wang, J. Zhang, W. H. Wang, and Y. Jia, Acta Mater. 52, 4773 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-1101.2020.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Makarov.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.S., Goncharova, E.V., Qiao, J.C. et al. Calculations of the Fragility of High-Entropy Bulk Metallic Glasses Using the Data on Shear Elasticity Relaxation. Jetp Lett. 113, 723–727 (2021). https://doi.org/10.1134/S0021364021110060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021110060

Navigation