Skip to main content
Log in

Non-Stationary Spin-Polarized Tunneling through a Quantum Dot Coupled to Noncollinearly Polarized Ferromagnetic Leads

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Non-stationary spin-dependent transport through the interacting single-level quantum dot coupled to ferromagnetic leads with non-collinear magnetizations has been analyzed theoretically. The non-stationary transport is investigated within the theoretical approach based on kinetic equations for the electron occupation numbers with different spins taking into account high order correlation functions for the localized electrons. It has been demonstrated that spin polarization, direction and amplitude of the non-stationary currents could be effectively changed in a rather simple system by varying the relative directions of the magnetic moments in the leads. The degree of the currents spin polarization also changes following the direction of magnetic moments in the leads. The results open a possibility for spin polarization control in nanoscale systems and are very promising in the sense of spin filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Semiconductor Spintronics and Quantum Computation, Ed. by D. D. Awschalom, D. Loss, and N. Samarth, Series: Nanoscience and Technology (Springer, Berlin, 2002).

  2. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  3. P. Chuang, S.-C. Ho, L. W. Smith, F. Sfigakis, M. Pepper, C.-H. Chen, J.-C. Fan, J. P. Griffiths, I. Farrer, H. E. Beere, G. A. C. Jones, D. A. Ritchie, and T.‑M. Chen, Nat. Nanotechnol. 710, 35 (2014).

    Google Scholar 

  4. A. Bayat, C. E. Creffield, J. H. Jefferson, M. Pepper, and S. Bose, Semicond. Sci. Technol. 30, 105025 (2015).

  5. I. Žutić, G. Xu, M. Lindemann, P. E. Faria Junior, J. Lee, V. Labinac, K. Stojsic, G. Sipahi, M. Hofmann, and N. Gerhardt, Solid State Commun. 316, 113949 (2020).

  6. E. Y. Tsymbal, O. N. Mryasov, and P. R. LeClair, J. Phys.: Condens. Matter 15, R109 (2003).

    ADS  Google Scholar 

  7. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London, U.K.) 402, 787 (1999).

    Article  ADS  Google Scholar 

  8. V. I. Perel’, S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev, V. V. Bel’kov, and W. Prettl, Phys. Rev. B 67, 201304 (2003).

  9. M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko, and I. N. Yassievich, Phys. Rev. B 71, 155313 (2005).

  10. R. M. Potok, J. A. Folk, C. M. Marcus, V. Umansky, M. Hanson, and A. C. Gossard, Phys. Rev. Lett. 91, 016802 (2003).

  11. J. A. Andrade and P. S. Cornaglia, Phys. Rev. B 94, 235112 (2016).

  12. T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88, 126601 (2002).

  13. A. Voskoboynikov, S. S. Liu, and C. P. Lee, Phys. Rev. B 58, 15397 (1998).

    Article  ADS  Google Scholar 

  14. N. S. Maslova, I. V. Rozhansky, V. N. Mantsevich, P. I. Arseyev, N. S. Averkiev, and E. Lahderanta, Phys. Rev. B 97, 195445 (2018).

  15. I. V. Rozhansky, V. N. Mantsevich, N. S. Maslova, P. I. Arseyev, N. S. Averkiev, and E. Lahderanta, Phys. Rev. B 101, 045305 (2020).

  16. B. L. Hazelzet, M. R. Wegewijs, T. H. Stoof, and Y. V. Nazarov, Phys. Rev. B 63, 165313 (2001).

  17. E. Cota, R. Aguado, and G. Platero, Phys. Rev. Lett. 94, 107202 (2005).

  18. I. Bar-Joseph and S. A. Gurvitz, Phys. Rev. B 44, 3332 (1991).

    Article  ADS  Google Scholar 

  19. S. A. Gurvitz and M. S. Marinov, Phys. Rev. A 40, 2166 (1989).

    Article  ADS  Google Scholar 

  20. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, Eur. Phys. J. B 85, 249 (2012).

    Article  ADS  Google Scholar 

  21. C. A. Stafford and N. Wingreen, Phys. Rev. Lett. 76, 1916 (1996).

    Article  ADS  Google Scholar 

  22. B. L. Hazelzet, M. R. Wegewijs, and T. H. Stoof, Phys. Rev. B 63, 165313 (2001).

  23. L. D. Contreras-Pulido, J. Splettstoesser, M. Governale, M. Governale, J. Konig, and M. Buttiker, Phys. Rev. B 85, 075301 (2012).

  24. F. Elste, D. R. Reichman, and A. J. Millis, Phys. Rev. B 81, 205413 (2010).

  25. D. M. Kennes, S. G. Jakobs, C. Karrasch, and V. Meden, Phys. Rev. B 85, 085113 (2012).

  26. S. Bednarek, J. Pawlowski, M. Gorski, and G. Skowron, Phys. Rev. Appl. 11, 034012 (2019).

  27. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London, U.K.) 456, 218 (2008).

    Article  ADS  Google Scholar 

  28. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Ohberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Nature (London, U.K.) 451, 441 (2008).

    Article  ADS  Google Scholar 

  29. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

    Article  ADS  Google Scholar 

  30. K. C. Nowack, M. Shafiei, M. Laforest, G. E. D. K. Prawiroatmodjo, L. R. Schreiber, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Science (Washington, DC, U. S.) 333, 1269 (2011).

    Article  ADS  Google Scholar 

  31. A. Bernard-Mantel, P. Seneor, N. Lidgi, M. Munoz, V. Cros, S. Fusil, K. Bouzehouane, C. Deranlot, A. Vaures, F. Retroff, and A. Fert, Appl. Phys. Lett. 89, 062502 (2006).

  32. K. Hamaya, S. Masubuchi, M. Kawamura, T. Machida, M. Jung, K. Shibata, K. Hirakawa, T. Taniyama, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 90, 053108 (2007).

  33. A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A. K. Donev, P. L. McEuen, and D. C. Ralph, Science (Washington, DC, U. S.) 306, 86 (2004).

    Article  ADS  Google Scholar 

  34. L. Y. Zhang, C. Y. Wang, Y. G. Wei, X. Y. Liu, and D. Davidovich, Phys. Rev. B 72, 155445 (2005).

  35. K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature (London, U.K.) 401, 572 (1999).

    Article  ADS  Google Scholar 

  36. B. Zhao, I. Monch, H. Vinzelberg, T. Muhl, and C. M. Schneider, Appl. Phys. Lett. 80, 3144 (2002).

    Article  ADS  Google Scholar 

  37. S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, and C. Schonenberger, Nat. Phys. 1, 102 (2005).

    Article  Google Scholar 

  38. H. B. Heersche, Th. Schapers, J. Nitta, and H. Takayanagi, Phys. Rev. B 64, 161307 (2001).

  39. J. C. Egues, Phys. Rev. Lett. 80, 4578 (1998).

    Article  ADS  Google Scholar 

  40. B. R. Bulka, Phys. Rev. B 62, 1186 (2000).

    Article  ADS  Google Scholar 

  41. W. Rudzinski and J. Barnas, Phys. Rev. B 69, 085318 (2001).

  42. J. Fransson, O. Eriksson, and I. Sandalov, Phys. Rev. Lett. 88, 226601 (2002).

  43. R. Lopez and D. Sanchez, Phys. Rev. Lett. 90, 116602 (2003).

  44. W. Rudzinski, J. Barnas, R. Swirkowicz, and M. Wilczynski, Phys. Rev. B 71, 205307 (2005).

  45. I. Weymann and J. Barnas, Phys. Rev. B 75, 155308 (2007).

  46. N. Sergueev, Q. F. Sun, H. Guo, B. G. Wang, and J. Wang, Phys. Rev. B 65, 165303 (2002).

  47. J. Konig and J. Martinek, Phys. Rev. Lett. 90, 166602 (2003).

  48. M. Braun, J. Konig, and J. Martinek, Phys. Rev. B 70, 195345 (2004).

  49. J. Pawlowski, G. Skowron, P. Szumniak, and S. Bed-narek, arXiv: 2009.12439 (2020).

  50. J. Pawlowski, M. Gorski, G. Skowron, and S. Bedna-rek, Phys. Rev. B 96, 115308 (2017).

  51. S. Bednarek, J. Pawlowski, M. Gorski, and G. Skowron, New J. Phys. 19, 123006 (2017).

  52. N. S. Maslova, V. N. Mantsevich, and P. I. Arseyev, JETP Lett. 105, 260 (2017).

    Article  ADS  Google Scholar 

  53. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, JETP Lett. 108, 485 (2018).

    Article  ADS  Google Scholar 

  54. N. S. Maslova, P. I. Arseyev, and V. N. Mantsevich, Solid State Commun. 248, 21 (2016).

    Article  ADS  Google Scholar 

  55. V. N. Mantsevich, I. V. Rozhansky, N. S. Maslova, P. I. Arseyev, N. S. Averkiev, and E. Lahderanta, Phys. Rev. B 99, 115307 (2019).

  56. T. Ludvig, I. S. Burmistrov, Y. Gefen, and A. Shnirman, Phys. Rev. B 95, 075425 (2017).

  57. T. Ludvig, I. S. Burmistrov, Y. Gefen, and A. Shnirman, Phys. Rev. B 99, 045429 (2019).

  58. S. Amaha, W. Izumida, T. Hatano, S. Teraoka, S. Tarucha, J. A. Gupta, and D. G. Austing, Phys. Rev. Lett. 110, 16803 (2013).

    Article  ADS  Google Scholar 

  59. J. Fransson, Phys. Rev. B 69, 201304 (2004).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-32-70001) and by the Interdisciplinary Scientific and Educational School “Photonic and Quantum Technologies. Digital Medicine,” Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mantsevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchkin, V.N., Mantsevich, V.N. & Maslova, N.S. Non-Stationary Spin-Polarized Tunneling through a Quantum Dot Coupled to Noncollinearly Polarized Ferromagnetic Leads. Jetp Lett. 113, 681–688 (2021). https://doi.org/10.1134/S0021364021110023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021110023

Navigation