Skip to main content
Log in

Classification of Emergent Weyl Spinors in Multi-Fermion Systems

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

In the fermionic systems with topologically stable Fermi points, the emergent two-component Weyl fermions appear. We propose the topological classification of these fermions based on the two invariants composed of the two-component Green’s function. We define these invariants using the Wigner–Weyl formalism also in case of essentially inhomogeneous systems. In the case where values of these invariants are minimal (±1), we deal with emergent relativistic symmetry. The emergent gravity appears, and our classification of Weyl fermions gives rise to the classification of vielbein. Transformations between emergent relativistic Weyl fermions of different types correspond to parity conjugation, time reversal, and charge conjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case of lattice models, we require that all fields depending on coordinates almost do not vary at the distances of the order of lattice spacing. Under these conditions, the sum over the lattice points in the majority of expressions may be replaced by an integral.

  2. More precisely, the operator \(\hat {Q}\) is Hermitian, but its inverse \(\hat {G}\) is considered in space of generalized (rather than ordinary) operator-valued functions, and the mentioned would be infinitely small correction to \(\hat {Q}\) actually has the meaning of the proper definition of \(\mathop {\hat {Q}}\nolimits^{ - 1} \). In space of ordinary operators, the inverse to \(\hat {Q}\) does not exist.

REFERENCES

  1. A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).

    ADS  Google Scholar 

  2. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).

    Article  ADS  Google Scholar 

  3. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  4. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  5. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  6. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, and R. J. Cava, arXiv: 1309.7978 [cond-mat.mes-hall].

  7. P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).

    Article  ADS  Google Scholar 

  8. S. P. Novikov, Dokl. Akad. Nauk SSSR 257, 538 (1981).

    MathSciNet  Google Scholar 

  9. J. E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51, 51 (1983).

    Article  ADS  Google Scholar 

  10. G. E. Volovik, JETP Lett. 46, 98 (1987).

    ADS  Google Scholar 

  11. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  12. G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

    Article  ADS  Google Scholar 

  13. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  14. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  15. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  16. X.-L. Qi and Sh.-Ch. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  17. M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  18. G. E. Volovik, JETP Lett. 90, 398 (2009); arXiv: 0907.5389.

    Article  ADS  Google Scholar 

  19. C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991).

    Book  Google Scholar 

  20. G. E. Volovik, JETP Lett. 44, 498 (1986).

    ADS  Google Scholar 

  21. G. E. Volovik, Lect. Notes Phys. 870, 343 (2013); a-rXiv: 1111.4627.

  22. H. Min and A. H. MacDonald, Prog. Theor. Exp. Phys. Suppl. 176, 1 (2008).

    Article  Google Scholar 

  23. P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Hořava, Phys. Rev. D 79, 084008 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Hořava, J. High Energy Phys. 0903, 020 (2009); ar-Xiv:0812.4287.

  26. C. Xu and P. Hořava, Phys. Rev. D 81, 104033 (2010).

    Article  ADS  Google Scholar 

  27. M. I. Katsnelson and G. E. Volovik, JETP Lett. 95, 411 (2012); arXiv: 1203.1578.

    Article  ADS  Google Scholar 

  28. M. I. Katsnelson, G. E. Volovik, and M. A. Zubkov, Ann. Phys. 331, 160 (2013).

    Article  ADS  Google Scholar 

  29. M. A. Zubkov, JETP Lett. 95, 476 (2012).

    Article  ADS  Google Scholar 

  30. M. I. Katsnelson, G. E. Volovik, and M. A. Zubkov, Ann. Phys. 336, 36 (2013); arXiv: 1303.2497.

    Article  ADS  Google Scholar 

  31. M. A. Zubkov and G. E. Volovik, Ann. Phys. 340, 352 (2014); arXiv: 1305.4665 [cond-mat.mes-hall].

    Article  ADS  Google Scholar 

  32. J. Phys.: Conf. Ser. 607, 012020 (2015); arXiv: 1308.2249 [cond-mat.str-el].

  33. A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).

    Article  ADS  Google Scholar 

  34. A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. L-udwig, AIP Conf. Proc. 1134, 10 (2009); arXiv:0905.2029.

  35. A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv: 0901.2686.

  36. G. E. Volovik, arXiv: 2011.06466.

  37. S. N. Vergeles, arXiv:1903.09957.

  38. M. A. Zubkov and X. Wu, Ann. Phys. 418, 168179 (2020); arXiv: 1901.06661.

  39. C. X. Zhang and M. A. Zubkov, JETP Lett. 110, 487 (2019); arXiv: 1908.04138.

  40. M. Suleymanov and M. A. Zubkov, Phys. Rev. D 102, 076019 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  41. G. E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014); arXiv:1402.5700 [cond-mat.mes-hall]. https://doi.org/10.1016/j.nuclphysb.2014.02.018

  42. A. A. Soluyanov, D. Gresch, Zh. Wang, Q. Wu, M. Troyer, and X. Dai, and B. Andrei Bernevig, Nature (London, U. K.) 527, 495 (2015). https://doi.org/10.1038/nature15768

    Article  ADS  Google Scholar 

  43. M. A. Zubkov, Ann. Phys. 373, 298 (2016); arXiv: 1603.03665 [cond-mat.mes-hall]. https://doi.org/10.1016/j.aop.2016.07.011

  44. J. Nissinen and G. E. Volovik, JETP Lett. 105, 447 (2017); arXiv: 1702.04624 [cond-mat.str-el]. https://doi.org/10.1134/S0021364017070013

Download references

ACKNOWLEDGMENTS

I am grateful to G.E. Volovik for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zubkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubkov, M.A. Classification of Emergent Weyl Spinors in Multi-Fermion Systems. Jetp Lett. 113, 445–453 (2021). https://doi.org/10.1134/S0021364021070031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021070031

Navigation