Skip to main content
Log in

Magnetic Neutron Scattering in Reduced Graphene Oxide

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The scale of magnetic correlations in materials based on reduced graphene oxide (RGO) has been estimated for the first time using the method of small-angle scattering of polarized neutrons. This information cannot be obtained by other methods. Experiments have demonstrated the presence of small-angle magnetic-nuclear interference scattering for both original RGO and an RGO-based composite in magnetized fields H about 1 T, which unequivocally indicates the presence of magnetized areas on the scale of 1000 Å in the studied materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. L. Ivanovskii, Phys. Usp. 50, 1031 (2007). https://doi.org/10.1070/PU2007v050n10ABEH006380

    Article  ADS  Google Scholar 

  2. T. L. Makarova, Semiconductors 38, 615 (2004).

    Article  ADS  Google Scholar 

  3. B. Sanyal and O. Eriksson, Advanced Functional Materials: A Perspective from Theory and Experiment (Elsevier, Amsterdam, 2012), p. 260.

    Google Scholar 

  4. A. Diamantopoulou, S. Glenis, G. Zolnierkiwicz, N. Guskos, and V. Likodimos, J. Appl. Phys. 121, 043906 (2017). https://doi.org/10.1063/1.4974364

    Article  ADS  Google Scholar 

  5. S. Yang, M. Tan, T. Yu, X. Li, X. Wang, and J. Zhang, Nano-Micro Lett. 12, 69 (2020). https://doi.org/10.1007/s40820-020-0403-9

    Article  ADS  Google Scholar 

  6. Y. F. Wang, S. B. Singh, M. V. Limaye, et al., Sci. Rep. 5, 15439 (2015). https://doi.org/10.1038/srep15439

    Article  ADS  Google Scholar 

  7. A. N. Ionov, M. P. Volkov, and M. N. Nikolaeva, JETP Lett. 109, 163 (2019). https://doi.org/10.1134/S0021364019030111

    Article  ADS  Google Scholar 

  8. T. Huang, L. Zhang, and T. Ma, Sci. Bull. 64, 310 (2019). https://doi.org/10.1016/j.scib.2019.01.026

    Article  Google Scholar 

  9. T. Miyata, S. Gohda, T. Fujii, H. Ono, H. Itoh, Y. Nishina, and K. Kashimura, Carbon 171, 10 (2021). https://doi.org/10.1016/j.carbon.2020.08.044

    Article  Google Scholar 

  10. O. V. Yazyev and M. I. Katsnelson, Adv. Funct. Mater. 2, 71 (2012). https://doi.org/10.1016/B978-0-44-453681-5.00004-2

    Article  Google Scholar 

  11. V. V. Runov, D. S. Ilyn, M. K. Runova, and A. K. Radzhabov, JETP Lett. 95, 467 (2012). https://doi.org/10.1134/S0021364012090111

    Article  ADS  Google Scholar 

  12. V. V. Runov, V. N. Skorobogatykh, M. K. Runova, and I. V. Sumin, Phys. Solid State 56, 62 (2014). https://doi.org/10.1134/S1063783414010314

    Article  ADS  Google Scholar 

  13. V. V. Runov, A. N. Bugrov, R. Yu. Smyslov, G. P. Kopitsa, M. K. Runova, B. V. Vasil’ev, E. N. Popova, S. A. Kirillova, A. Feoktistov, and V. Pipich, Russ. J. Inorg. Chem. 66, 225 (2021). https://doi.org/10.1134/S0036023621020170

    Article  Google Scholar 

  14. E. Ershenko, A. Bobyl, M. Boiko, Y. Zubavichus, V. Runov, M. Trenikhin, and M. Sharkov, Ionics 23, 2293 (2017). https://doi.org/10.1007/s11581-017-2068-z

    Article  Google Scholar 

  15. S. V. Maleev, Usp. Fiz. Nauk 192 (6), 617 (2002). https://doi.org/10.1070/PU2002v045n06ABEH001017

    Article  Google Scholar 

  16. A. Dideykin, A. E. Aleksenskiy, D. Kirilenko, P. Brunkov, V. Goncharov, M. Baidakova, D. Sakseev, and A. Ya. Vul’, Diamond Relat. Mater. 20, 105 (2011). https://doi.org/10.1016/j.diamond.2010.10.007

    Article  ADS  Google Scholar 

  17. M. N. Nikolaeva, A. N. Bugrov, T. D. Anan’eva, A. T. Dideikin, M. K. Rabchinskii, and A. N. Ionov, Nanosyst.: Phys., Chem., Math. 9, 793 (2018). https://doi.org/10.17586/2220-8054-2018-9-6-793-797

    Article  Google Scholar 

  18. M. N. Nikolaeva, T. D. Anan’eva, A. N. Bugrov, A. T. Dideikin, and E. M. Ivankova, Nanosyst.: Phys., Chem., Math. 8, 266 (2017). https://doi.org/10.17586/2220-8054-2017-8-2-266-271

    Article  Google Scholar 

  19. M. N. Nikolaeva, A. N. Bugrov, T. D. Anan’eva, and A. T. Dideikin, Russ. J. Appl. Chem. 87, 1151 (2014). https://doi.org/10.1134/S1070427214080230

    Article  Google Scholar 

  20. A. V. Feoktystov, H. Frielinghaus, Z. Di, S. Jaksch, V. Pipich, M.-S. Appavou, E. Babcock, R. Hanslik, R. Engels, G. Kemmerling, H. Kleines, A. Ioffe, D. Richter, and T. Brückel, J. Appl. Crystallogr. 48, 61 (2015). https://doi.org/10.1107/S1600576714025977

    Article  Google Scholar 

  21. H. Frielinghaus, A. Feoktystov, I. Berts, and G. Mangiapia, J. Large-Scale Res. Facil. 1, A28 (2015). https://doi.org/10.17815/jlsrf-1-26

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is based on experiments carried out on a KWS-1 facility, Jülich Centre for Neutron Science at MLZ (Garching, Germany).

Funding

A.N. Bugrov, R.Yu. Smyslov, and V.V. Runov acknowledge the support of the Russian Foundation of Basic Research (project no. 20-02-00918 А).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Runov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runov, V.V., Bugrov, A.N., Smyslov, R.Y. et al. Magnetic Neutron Scattering in Reduced Graphene Oxide. Jetp Lett. 113, 384–388 (2021). https://doi.org/10.1134/S0021364021060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021060102

Navigation