Skip to main content
Log in

Compression of a Runaway Electron Flow in an Air Gap with a Nonuniform Magnetic Field

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The first results of study of the compression of a picosecond runaway electron flow in an air electrode gap by a pulsed guiding magnetic field increasing along the electron trajectory by a factor of 10–20 are reported. The main aim is to increase the density and homogeneity of the current of runaway electrons that are generated near the edge of a tubular cathode and are accelerated in an inhomogeneous electric field to a collector inside a solenoid. Restrictions on the integral current of runaway electrons caused by the reflection of particles with high transverse velocities from a region of concentration of magnetic field lines (magnetic mirror) have been analyzed. Under “optimal” conditions (magnetic field, the diameter of the cathode, and its position with respect to the solenoid are varied), a magnetized tubular runaway electron flow radially compressed by a factor of 3–4 with a current density up to 100 А/cm2 is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Dreicer, Phys. Rev. 117, 329 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. V. Gurevich, Sov. Phys. JETP 12, 904 (1960).

    Google Scholar 

  3. Yu. L. Stankevich and V. G. Kalinin, Sov. Phys. Dokl. 12, 1042 (1967).

    ADS  Google Scholar 

  4. A. V. Gurevich and K. P. Zybin, Phys. Usp. 44, 1119 (2001).

    Article  ADS  Google Scholar 

  5. P. Aleynikov and B. N. Breizman, Phys. Rev. Lett. 114, 155001 (2015).

    Article  ADS  Google Scholar 

  6. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Usp. 33, 521 (1990).

    Article  ADS  Google Scholar 

  7. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, M. I. Yalandin, A. G. Reutova, V. G. Shpak, and S. A. Shunailov, Phys. Rev. Lett. 109, 085002 (2012).

    Article  ADS  Google Scholar 

  8. V. Tarasenko, Plasma Sources Sci. Technol. 29, 034001 (2020).

    Article  ADS  Google Scholar 

  9. D. V. Beloplotov, V. F. Tarasenko, V. A. Shklyaev, and D. A. Sorokin, JETP Lett. 113, 129 (2021).

    Article  ADS  Google Scholar 

  10. S. Yatom, A. Shlapakovski, L. Beilin, E. Stambulchik, S. Tskhai, and Ya. E. Krasik, Plasma Sources Sci. Technol. 25, 064001 (2016).

    Article  ADS  Google Scholar 

  11. N. M. Zubarev and G. A. Mesyats, JETP Lett. 113, 259 (2021).

    Article  ADS  Google Scholar 

  12. N. M. Zubarev, V. Yu. Kozhevnikov, A. V. Kozyrev, G. A. Mesyats, N. S. Semeniuk, K. A. Sharypov, S. A. Shunailov, and M. I. Yalandin, Plasma Sources Sci. Technol. 29, 125008 (2020).

    Article  ADS  Google Scholar 

  13. G. A. Mesyats, M. I. Yalandin, N. M. Zubarev, A. G. Sadykova, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. R. Ulmaskulov, O. V. Zubareva, A. V. Kozyrev, and N. S. Semeniuk, Appl. Phys. Lett. 116, 063501 (2020).

    Article  ADS  Google Scholar 

  14. G. A. Askar’yan, Tr. FIAN 66, 66 (1973).

    Google Scholar 

  15. V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semenyuk, Russ. Phys. J. 60, 1425 (2017).

    Article  Google Scholar 

  16. S. Ya. Belomyttsev, I. V. Romanchenko, V. V. Ryzhov, and V. A. Shklyaev, Tech. Phys. Lett. 34, 367 (2008).

    Article  ADS  Google Scholar 

  17. D. Levko, S. Yatom, V. Vekselman, J. Z. Gleizer, V. T. Gurovich, and Ya. E. Krasik, J. Appl. Phys. 111, 013303 (2012).

    Article  ADS  Google Scholar 

  18. G. A. Mesyats, JETP Lett. 85, 109 (2007).

    Article  ADS  Google Scholar 

  19. V. I. Solomonov, S. G. Michailov, A. I. Lipchak, V. V. Osipov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, and M. R. Ulmaskulov, Laser Phys. 16, 126 (2006).

    Article  ADS  Google Scholar 

  20. K. V. Berezhnoi, M. B. Bochkarev, G. L. Danielyan, A. S. Nasibov, A. G. Reutova, S. A. Shunailov, and M. I. Yalandin, Quantum Electron. 42, 34 (2012).

    Article  ADS  Google Scholar 

  21. L. P. Babich, T. V. Loiko, and A. V. Rodigin, IEEE Trans. Plasma Sci. 42, 948 (2014).

    Article  ADS  Google Scholar 

  22. V. A. Flyagin and G. S. Nusinovich, Proc. IEEE 76, 644 (1988).

    Article  ADS  Google Scholar 

  23. G. I. Budker, V. V. Mirnov, and D. D. Ryutov, JETP Lett. 14, 212 (1971).

    ADS  Google Scholar 

  24. M. A. Tiunov, B. M. Fomel’, and V. P. Yakovlev, INPh Preprint No. 89-159 (Inst. Nucl. Phys., Novosibirsk, 1989).

    Google Scholar 

  25. N. M. Zubarev, G. A. Mesyats, and M. I. Yalandin, JETP Lett. 105, 537 (2017).

    Article  ADS  Google Scholar 

  26. N. M. Zubarev, M. I. Yalandin, G. A. Mesyats, S. A. Barengolts, A. G. Sadykova, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, and O. V. Zubareva, J. Phys. D: Appl. Phys. 51, 284003 (2018).

    Article  Google Scholar 

  27. S. Ya. Belomyttsev, I. V. Romanchenko, and V. V. Rostov, Russ. Phys. J. 51, 299 (2008).

    Article  Google Scholar 

  28. L. R. Peterson and A. E. S. Green, J. Phys. B: At. Mol. Phys. 1, 1131 (1968).

    Article  ADS  Google Scholar 

  29. V. G. Shpak, S. A. Shunailov, M. I. Yalandin, and A. N. Dyadkov, Instrum. Exp. Tech. 36, 106 (1993).

    Google Scholar 

  30. M. I. Yalandin, S. K. Lyubutin, M. R. Oulmascoulov, S. N. Rukin, V. G. Shpak, S. A. Shunailov, and B. G. Slovikovsky, IEEE Trans. Plasma Sci. 30, 1700 (2002).

    Article  ADS  Google Scholar 

  31. K. A. Sharypov, M. R. Ul’masculov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, G. A. Mesyats, V. V. Rostov, and M. D. Kolomiets, Rev. Sci. Instrum. 85, 125104 (2014).

    Article  ADS  Google Scholar 

  32. V. A. Shklyaev and V. V. Ryzhov, Tech. Phys. Lett. 37, 72 (2011).

    Article  ADS  Google Scholar 

  33. V. V. Rostov, A. A. El’chaninov, I. V. Romanchenko, S. A. Shunailov, M. R. Ul’maskulov, K. A. Sharypov, V. G. Shpak, S. N. Rukin, and M. I. Yalandin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 56, 525 (2013).

    Google Scholar 

  34. N. S. Ginzburg, A. S. Sergeev, I. V. Zotova, Y. V. Novozhilova, N. Y. Peskov, I. V. Konoplev, A. D. R. Phelps, A. W. Cross, S. J. Cooke, P. Aitken, V. G. Shpak, M. I. Yalandin, S. A. Shunailov, and M. R. Ulmaskulov, Nucl. Instrum. Methods Phys. Res., Sect. A 393, 352 (1997).

    Google Scholar 

  35. V. F. Baranov, Electron Radiation Dosimetry (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  36. S. Ya. Belomyttsev, S. D. Korovin, and G. A. Mesyats, Sov. Tech. Phys. Lett. 6, 466 (1980).

    Google Scholar 

  37. S. D. Korovin, E. A. Litvinov, G. A. Mesyats, A. M. Murzakaev, V. V. Rostov, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin, Tech. Phys. Lett. 30, 813 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Department of Electrophysics, Ural Federal University, for access to a Tektronix DPO73304D oscilloscope. The experiments were performed on the equipment of the Shared Use Center, Institute of Electrophysics, Ural Branch, Russian Academy of Sciences.

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 19-08-00292 (experiment) and no. 20-08-00172 (theory)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zubarev.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashkov, M.A., Zubarev, N.M., Zubareva, O.V. et al. Compression of a Runaway Electron Flow in an Air Gap with a Nonuniform Magnetic Field. Jetp Lett. 113, 370–377 (2021). https://doi.org/10.1134/S0021364021060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021060059

Navigation