Skip to main content
Log in

Source of Indistinguishable Single Photons Based on Epitaxial InAs/GaAs Quantum Dots for Integration in Quantum Computing Schemes

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The characteristics of single photons emitted by columnar microstructures based on epitaxial microcavity heterostructures with distributed Bragg reflectors, which include self-organized InAs/GaAs quantum dots and have a comparatively low Q factor in the range of 2000–3000, have been studied. It has been shown that a state with a given spin configuration—exciton with a certain polarization or trion—can be initialized in a single quantum dot under the coherent resonant linearly polarized optical pumping by a π pulse. The measurement of two-photon interference by the Hong–Ou–Mandel scheme has demonstrated that the degree of indistinguishability of successively emitted single photons is 97 and 93% at a time delay of 2 and 250 ns, respectively. Prospects of application of such sources in optical quantum computing schemes have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. D. Eisama, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011).

    Article  ADS  Google Scholar 

  2. M. Rakhlin, K. Belyaev, S. Sorokin, I. Sedova, D. Kirilenko, A. Mozharov, I. Mukhin, M. Kulagina, Yu. Zadiranov, S. Ivanov, and A. Toropov, JETP Lett. 108, 201 (2018).

    Article  ADS  Google Scholar 

  3. M. Rakhlin, K. Belyaev, G. Klimko, I. Sedova, M. Kulagina, Y. Zadiranov, S. Troshkov, Y. Guseva, Y. Terentèv, S. Ivanov, and A. Toropov, JETP Lett. 109, 145 (2019).

    Article  ADS  Google Scholar 

  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  5. K. Balygin, V. Zaitsev, A. Klimov, S. Kulik, and S. Molotkov, JETP Lett. 106, 470 (2017).

    Article  ADS  Google Scholar 

  6. K. Balygin, A. Klimov, S. Kulik, and S. Molotkov, JETP Lett. 106, 120 (2017).

    Article  ADS  Google Scholar 

  7. H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, et al., Nat. Photon. 11, 361 (2017).

    Article  ADS  Google Scholar 

  8. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.‑W. Pan, Nat. Nanotechnol. 8, 213 (2013).

    Article  ADS  Google Scholar 

  9. Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, Nano Lett. 14, 6515 (2014).

    Article  ADS  Google Scholar 

  10. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.‑C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, Phys. Rev. Lett. 116, 020401 (2016).

    Article  ADS  Google Scholar 

  11. N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, Nat. Photon. 10, 340 (2016).

    Article  ADS  Google Scholar 

  12. J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, Optica 3, 433 (2016).

    Article  ADS  Google Scholar 

  13. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.‑M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.‑W. Pan, Phys. Rev. Lett. 116, 213601 (2016).

    Article  ADS  Google Scholar 

  14. H. Vural, S. L. Portalupi, and P. Michler, Appl. Phys. Lett. 117, 030501 (2020).

    Article  ADS  Google Scholar 

  15. S. Gerhardt, J. Iles-Smith, D. P. S. McCutcheon, Y.‑M. He, S. Unsleber, S. Betzold, N. Gregersen, J. Mørk, S. Höfling, and C. Schneider, Phys. Rev. B 97, 195432 (2018).

    Article  ADS  Google Scholar 

  16. J. Bylander, I. Robert-Philip, and I. Abram, Eur. Phys. J. D 22, 295 (2003).

    Article  ADS  Google Scholar 

  17. A. J. Bennett, D. C. Unitt, A. J. Shields, P. Atkinson, and D. A. Ritchie, Opt. Express 13, 7772 (2005).

    Article  ADS  Google Scholar 

  18. J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, Phys. Rev. Lett. 108, 107401 (2012).

    Article  ADS  Google Scholar 

  19. E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Migdall, and G. S. Solomon, Phys. Rev. Lett. 104, 137401 (2010).

    Article  ADS  Google Scholar 

  20. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 96, 011107 (2010).

    Article  ADS  Google Scholar 

  21. S. Reitzenstein, S. Munch, P. Franeck, A. Rahimi-Iman, T. Heindel, A. Loffler, S. Höfling, L. Worschech, A. Forchel, I. V. Ponomarev, and T. L. Reinecke, J. Phys.: Conf. Ser. 334, 012011 (2011).

    Google Scholar 

  22. P. Hilaire, C. Millet, J. Loredo, C. Antón, A. Harouri, A. Lemaitre, I. Sagnes, N. Somaschi, O. Krebs, P. Senellart, and L. Lanco, Phys. Rev. B 102, 195402 (2020).

    Article  ADS  Google Scholar 

  23. J. Martin-Sanchez, R. Trotta, A. Mariscal, R. Serna, G. Piredda, S. Stroj, J. Edlinger, C. Schimpf, J. Aberl, T. Lettner, J. Wildmann, H. Huang, X. Yuan, D. Ziss, J. Stangl, and A. Rastelli, Semicond. Sci. Technol. 33, 013001 (2017).

    Article  ADS  Google Scholar 

  24. M. Moczala-Dusanowska, L. Dusanowski, S. Gerhardt, Y. M. He, M. Reindl, A. Rastelli, R. Trotta, N. Gregersen, S. Höfling, and C. Schneider, ACS Photon. 6, 2025 (2019).

  25. S. Gerhardt, M. Mocza la-Dusanowska, D. Lukasz, T. Huber, S. Betzold, J. Martin-Sánchez, R. Trotta, A. Predojević, S. Höfling, and C. Schneider, Phys. Rev. B 101, 245308 (2020).

    Article  ADS  Google Scholar 

  26. H. Wang, Y.-M. He, T.-H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.-C. Chen, J. Qin, X. Yang, R.‑Z. Liu, Z.-C. Duan, J.-P. Li, S. Gerhardt, K. Winkler, et al., Nat. Photon. 13, 770 (2019).

    Article  ADS  Google Scholar 

  27. T. M. Zhao, Y. Chen, Y. Yu, Q. Li, M. Davanco, and J. Liu, Adv. Quantum Technol. 3, 1900034 (2020).

    Article  Google Scholar 

  28. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

    Article  ADS  Google Scholar 

  29. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  30. A. Gaisler, I. Derebezov, V. Gaisler, D. Dmitriev, A. Toropov, A. Kozhukhov, D. Shcheglov, A. Latyshev, and A. Aseev, JETP Lett. 105, 103 (2017).

    Article  ADS  Google Scholar 

  31. H. Ollivier, I. M. B. Wenniger, S. Thomas, S. C. Wein, A. Harouri, G. Coppola, P. Hilaire, C. Millet, A. Lemaítre, I. Sagnes, O. Krebs, L. Lanc, J. C. Loredo, C. Anton, N. Somaschi, and P. Senellart, ACS Photon. 7, 1050 (2020).

  32. G. Wang, S. Fafard, D. Leonard, J. E. Bowers, J. L. Merz, and P. M. Petroff, Appl. Phys. Lett. 64, 2815 (1994).

    Article  ADS  Google Scholar 

  33. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Nature (London, U.K.) 419, 594 (2002).

    Article  ADS  Google Scholar 

  34. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Opt. Lett. 25, 1294 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-01212) and by the State Atomic Energy Corporation Rosatom. M.V. Rakhlin acknowledges the support of the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools. A.I. Galimov and T.V. Shubina acknowledge the support of the Russian Science Foundation (project no. 20-42-01008) for the study of the properties of exciton and trion states in single quantum dots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Galimov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimov, A.I., Rakhlin, M.V., Klimko, G.V. et al. Source of Indistinguishable Single Photons Based on Epitaxial InAs/GaAs Quantum Dots for Integration in Quantum Computing Schemes. Jetp Lett. 113, 252–258 (2021). https://doi.org/10.1134/S0021364021040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021040093

Navigation