Skip to main content
Log in

Amplification of Stimulated Raman Scattering in Media with a Near-Zero Refractive Index

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Materials with a near-zero refractive index open up new possibilities for enhancing nonlinear optical interactions. This lowers the threshold for nonlinear generation, reduces the size of existing nonlinear devices, and opens up prospects for new applications. In this work, the enhancement of stimulated Raman scattering (SRS) in materials with near-zero permittivity is studied. It is shown that the frequency shift of the Stokes wave gain is observed in these media, which leads to the shift of the SRS lines. In addition, a condition for the permittivity of the medium is obtained under which the SRS gain reaches its maximum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. Liberal and N. Engheta, Nat. Photon. 11, 149 (2017).

    Article  ADS  Google Scholar 

  2. N. Kinsey, C. de Vault, A. Boltasseva, and V. M. Shalaev, Nat. Rev. Mater. 4, 742 (2019).

    Article  ADS  Google Scholar 

  3. O. Reshef, I. de Leon, M. Z. Alam, and R. W. Boyd, Nat. Rev. Mater. 4, 535 (2019).

    Article  Google Scholar 

  4. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, J. Lightwave Technol. 32, 66 (2014).

    Article  Google Scholar 

  5. Z. Chai, X. Y. Hu, F. F. Wang, X. X. Niu, J. Y. Xie, and Q. H. Gong, Adv. Opt. Mater. 5, 1600665 (2017).

    Article  Google Scholar 

  6. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, Science (Washington, DC, U. S.) 286, 1523 (1999).

    Article  Google Scholar 

  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).

    Article  ADS  Google Scholar 

  8. D. E. Chang, V. Vuletic, and M. D. Lukin, Nat. Photon. 8, 685 (2014).

    Article  ADS  Google Scholar 

  9. F. Flamini, N. Spagnolo, and F. Sciarrino, Rep. Prog. Phys. 82, 016001 (2019).

    Article  ADS  Google Scholar 

  10. J. L. Ma and M. T. Sun, Nanophotonics 9, 1341 (2020).

    Article  Google Scholar 

  11. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  12. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 2008).

    Google Scholar 

  13. G. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2013).

    MATH  Google Scholar 

  14. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Opt. Express 16, 1280 (2008).

    Article  ADS  Google Scholar 

  15. G. P. Lin, A. Coillet, and Y. K. Chembo, Adv. Opt. Photon. 9, 828 (2017).

    Article  Google Scholar 

  16. S. S. Kharintsev, A. V. Kharitonov, S. K. Saikin, A. M. Alekseev, and S. G. Kazarian, Nano Lett. 17, 5533 (2017).

    Article  ADS  Google Scholar 

  17. Y. M. Yang, J. Lu, A. Manjavacas, T. S. Luk, H. Z. Liu, K. Kelley, J. P. Maria, E. L. Runnerstrom, M. B. Sinclair, S. Ghimire, and I. Brener, Nat. Phys. 15, 1022 (2019).

    Article  Google Scholar 

  18. I. A. Kolmychek, V. B. Novikov, I. V. Malysheva, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Opt. Lett. 45, 1866 (2020).

    Article  ADS  Google Scholar 

  19. Z. Chai, X. Y. Hu, F. F. Wang, C. Li, Y. T. Ao, Y. Wu, K. B. Shi, H. Yang, and Q. H. Gong, Laser Photon. Rev. 11, 1700042 (2017).

    Article  ADS  Google Scholar 

  20. M. Clerici, N. Kinsey, C. de Vault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, Nat. Commun. 8, 15829 (2017).

    Article  ADS  Google Scholar 

  21. I. Liberal and N. Engheta, Science (Washington, DC, U. S.) 358, 1540 (2017).

    Article  ADS  Google Scholar 

  22. R. C. Prince, R. R. Frontiera, and E. O. Potma, Chem. Rev. 117, 5070 (2017).

    Article  Google Scholar 

  23. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

    Article  Google Scholar 

  24. A. M. Kelley, Ann. Rev. Phys. Chem. 61, 41 (2010).

    Article  Google Scholar 

  25. B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, Nat. Photon. 13, 664 (2019).

    Article  ADS  Google Scholar 

  26. I. S. Maksymov and A. D. Greentree, Nanophotonics 8, 367 (2019).

    Article  Google Scholar 

  27. M. A. Ferrara and L. Sirleto, Micromachines 11, 330 (2020).

    Article  Google Scholar 

  28. J. Bromage, J. Lightwave Technol. 22, 79 (2004).

    Article  ADS  Google Scholar 

  29. S. S. Kharintsev, Opt. Lett. 44, 5909 (2019).

    Article  ADS  Google Scholar 

  30. S. S. Kharintsev, A. V. Kharitonov, A. R. Gazizov, and S. G. Kazarian, ACS Appl. Mater. Interfaces 12, 3862 (2020).

    Article  Google Scholar 

  31. S. S. Kharintsev, A. V. Kharitonov, A. M. Alekseev, and S. G. Kazarian, Nanoscale 11, 7710 (2019).

    Article  Google Scholar 

  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985), pp. 286, 350, 377.

    Google Scholar 

  33. G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).

    Article  ADS  Google Scholar 

  34. A. V. Kharitonov, I. V. Yanilkin, A. I. Gumarov, I. R. Vakhitov, R. V. Yusupov, L. R. Tagirov, S. S. Kharintsev, and M. Kh. Salakhov, Thin Solid Films 653, 200 (2018).

    Article  ADS  Google Scholar 

  35. H. Reddy, U. Guler, Zh. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, ACS Photon. 4, 1413 (2017).

  36. A. Kharitonov and S. Kharintsev, Opt. Mater. Express 10, 513 (2020).

    Article  ADS  Google Scholar 

  37. L. Braic, N. Vasilantonakis, A. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, N. M. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, ACS Appl. Mater. Interfaces 9, 29857 (2017).

    Article  Google Scholar 

  38. J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, Materials 9, 63 (2016).

    Article  ADS  Google Scholar 

  39. A. Momot, M. N. Amini, G. Reekmans, D. Lamoen, B. Partoens, D. R. Slocombe, K. Elen, P. Adriaensens, A. Hardy, and M. K. van Bael, Phys. Chem. Chem. Phys. 19, 27866 (2017).

    Article  Google Scholar 

  40. S. Horzum, F. Iyikanat, R. T. Senger, C. Celebi, M. Sbeta, A. Yildiz, and T. Serin, J. Mol. Struct. 1180, 505 (2019).

    Article  ADS  Google Scholar 

  41. M. Gioti, J. Arvanitidis, D. Christofilos, K. Chaudhuri, T. Zorba, G. Abadias, D. Gall, V. M. Shalaev, A. Boltasseva, and P. Patsalas, J. Opt. 22, 11 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. M.Kh. Salakhov (Academy of Sciences of the Republic of Tatarstan) for his valuable comments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0671-2020-0050 for the state task in the field of scientific activity at the Kazan Federal University). The work of A.R. Gazizov and S.S. Kharintsev acknowledge the support of the Russian Science Foundation (project no. 19-12-00066, synthesis of TiON samples).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kharintsev.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazizov, A.R., Kharitonov, A.V. & Kharintsev, S.S. Amplification of Stimulated Raman Scattering in Media with a Near-Zero Refractive Index. Jetp Lett. 113, 140–144 (2021). https://doi.org/10.1134/S002136402103005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402103005X

Navigation