Skip to main content
Log in

Nanostructured Graphene on β-SiC/Si(001): Atomic and Electronic Structures, Magnetic and Transport Properties (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The studies of the properties of graphene synthesized on the surface of epitaxial films of cubic single-crystal silicon carbide preliminarily grown on Si(001) wafers have been reviewed. These studies were supported by the Russian Foundation for Basic Research, project no. 17-02-01139. The results of these studies demonstrate that graphene layers synthesized on β-SiC/Si(001) substrates have the atomic structure and electronic properties of a quasi-freestanding graphene sheet. Continuous graphene layers with a preferential direction of nanodomain boundaries, which is determined by the orientation of steps on the initial surface, can be synthesized on vicinal SiC(001) substrates. The possibility of controlled growth of mono-, bi-, and trilayer graphene on β-SiC/Si(001) wafers has been demonstrated. The studies have shown the opening of a transport gap and a high positive magnetoresistance in a parallel magnetic field in an ordered system of graphene nanoribbons on the vicinal SiC(001) surface. It has been shown that the functionalization of graphene with organic compounds changes the electronic properties of graphene on SiC(001), modifying it to a semiconductor with given properties, which allows applications in modern micro- and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  3. A. J. van Bommel, J. E. Crombeen, and A. van Tooren, Surf. Sci. 48, 463 (1975).

    Article  ADS  Google Scholar 

  4. C. Berger, Z. Li, T. Song, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

    Article  Google Scholar 

  5. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater. 8, 203 (2009).

    Article  ADS  Google Scholar 

  6. M. Sprinkle, D. Siegel, Y. Hu, et al., Phys. Rev. Lett. 103, 226803 (2009).

    Article  ADS  Google Scholar 

  7. V. Yu. Aristov, G. Urbanik, K. Kummer, D. V. Vyalikh, O. V. Molodtsova, A. B. Preobrajenski, C. Hess, B. Büchner, I. Vobornik, J. Fujii, G. Panaccione, Yu. A. Ossipyan, and M. Knupfer, Nano Lett. 10, 992 (2010).

    Article  ADS  Google Scholar 

  8. A. N. Chaika, O. V. Molodtsova, A. A. Zakharov, D. Marchenko, J. Sánchez-Barriga, A. Varykhalov, I. V. Shvets, and V. Y. Aristov, Nano Res. 6, 562 (2013).

    Article  Google Scholar 

  9. A. N. Chaika, O. V. Molodtsova, A. A. Zakharov, D. Marchenko, J. Sánchez-Barriga, A. Varykhalov, S. V. Babenkov, M. Portail, M. Zielinski, B. E. Murphy, S. A. Krasnikov, O. Lübben, I. V. Shvets, and V. Y. Aristov, Nanotechnology 25, 135605 (2014).

    Article  ADS  Google Scholar 

  10. A. N. Chaika, V. Y. Aristov, and O. V. Molodtsova, Prog. Mater. Sci. 89, 1 (2017).

    Article  Google Scholar 

  11. H.-C. Wu, A. N. Chaika, T.-W. Huang, et al., ACS Nano 9, 8967 (2015).

    Article  Google Scholar 

  12. A. Ouerghi, M. Ridene, A. Balan, R. Belkhou, A. Barbier, N. Gogneau, M. Portail, A. Michon, S. Latil, P. Jegou, and A. Shukla, Phys. Rev. B 83, 205429 (2011).

    Article  ADS  Google Scholar 

  13. N. Gogneau, A. Balan, M. Ridene, A. Shukla, and A. Ouerghi, Surf. Sci. 606, 217 (2012).

    Article  ADS  Google Scholar 

  14. A. Ouerghi, A. Balan, C. Castelli, M. Picher, R. Belkhou, M. Eddrief, M. G. Silly, M. Marangolo, A. Shukla, and F. Sirotti, Appl. Phys. Lett. 101, 21603 (2012).

    Article  Google Scholar 

  15. S. Abe, H. Handa, R. Takahashi, K. Imaizumi, H. Fukidome, and M. Suemitsu, J. Appl. Phys. 50, 70102 (2011).

    Article  Google Scholar 

  16. E. Velez-Fort, M. G. Silly, R. Belkhou, A. Shukla, F. Sirotti, and A. Ouerghi, Appl. Phys. Lett. 103, 83101 (2013).

    Article  Google Scholar 

  17. N. Gogneau, A. Ben Gouider Trabelsi, M. G. Silly, M. Ridene, M. Portail, A. Michon, M. Oueslati, R. Belkhou, F. Sirotti, and A. Ouerghi, Nanotechnol. Sci. Appl. 7, 85 (2014).

    Google Scholar 

  18. P. Hens, A. A. Zakharov, T. Iakimov, M. Syväjärvi, and R. Yakimova, Carbon 80, 823 (2014).

    Article  Google Scholar 

  19. M. Suemitsu, S. Jiao, H. Fukidome, Y. Tateno, I. Makabe, and T. Nakabayashi, J. Phys. D: Appl. Phys. 47, 94016 (2014).

    Article  Google Scholar 

  20. V. Yu. Aristov, Phys. Usp. 44, 761 (2001).

    Article  ADS  Google Scholar 

  21. V. Yu. Aristov, A. N. Chaika, O. V. Molodtsova, S. V. Babenkov, A. Locatelli, T. O. Menteş, A. Sala, D. Potorochin, D. Marchenko, B. Murphy, B. Walls, K. Zhussupbekov, and I. V. Shvets, ACS Nano 13, 526 (2019).

    Article  Google Scholar 

  22. H.-C. Wu, A. N. Chaika, M.-C. Hsu, et al., Nat. Commun. 8, 14453 (2017).

    Article  ADS  Google Scholar 

  23. N. N. Sergeeva, A. N. Chaika, B. Walls, B. E. Murphy, K. Walshe, D. P. Martin, B. D. O. Richards, G. Jose, K. Fleischer, V. Yu. Aristov, O. V. Molodtsova, I. V. Shvets, and S. A. Krasnikov, Nanotechnology 29, 275705 (2018).

    Article  Google Scholar 

  24. B. Gupta, M. Notarianni, N. Mishra, M. Shafiei, F. Iacopi, and N. Motta, Carbon 68, 563 (2014).

    Article  Google Scholar 

  25. S. V. Babenkov, V. Y. Aristov, O. V. Molodtsova, L. Glaser, I. Shevchuk, F. Scholz, J. Seltmann, and J. Viefhaus, Nucl. Instrum. Methods Phys. Res., Sect. A 777, 189 (2015).

    Google Scholar 

  26. P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature (London, U.K.) 469, 389 (2011).

    Article  ADS  Google Scholar 

  27. A. Fasolino, J. H. Los, and M. I. Katsnelson, Nat. Mater. 6, 858 (2007).

    Article  ADS  Google Scholar 

  28. H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi, Phys. Rev. B 77, 75413 (2008).

    Article  ADS  Google Scholar 

  29. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. 103, 246804 (2009).

    Article  ADS  Google Scholar 

  30. S. Doniach and M. Šunjić, J. Phys. C: Solid State Phys. 3, 285 (1970).

    Article  ADS  Google Scholar 

  31. D. A. Shirley, Phys. Rev. 55, 4709 (1972).

    Article  Google Scholar 

  32. C. J. Powell, J. Electron Spectrosc. Relat. Phenom. 47, 197 (1988).

    Article  Google Scholar 

  33. M. Krawczyk, L. Zommer, A. Kosinski, J. W. Sobczak, and A. Jablonski, Surf. Interface Anal. 38, 644 (2006).

    Article  Google Scholar 

  34. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

    Article  Google Scholar 

  35. E. L. Shirley, L. J. Terminello, A. Santoni, and F. J. Himpsel, Phys. Rev. B 51, 13614 (1995).

    Article  ADS  Google Scholar 

  36. S. Rusponi, M. Papagno, P. Moras, S. Vlaic, M. Etzkorn, P. M. Sheverdyaeva, D. Pacilé, H. Brune, and C. Carbone, Phys. Rev. Lett. 105, 246803 (2010).

    Article  ADS  Google Scholar 

  37. B. Gupta, E. Placidi, C. Hogan, N. Mishra, F. Iacopi, and N. Motta, Carbon 91, 378 (2015).

    Article  Google Scholar 

  38. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  39. W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014).

    Article  ADS  Google Scholar 

  40. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London, U.K.) 448, 571 (2007).

    Article  ADS  Google Scholar 

  41. B. Dlubak, M.-B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W. A. de Heer, F. Petroff, A. Anane, P. Seneor, and A. Fert, Nat. Phys. 8, 557 (2012).

    Article  Google Scholar 

  42. M. V. Kamalakar, C. Groenveld, A. Dankert, and S. P. Dash, Nat. Commun. 6, 6766 (2015).

    Article  ADS  Google Scholar 

  43. H. Dery, P. Dalal, L. Cywiński, and L. J. Sham, Nature (London, U.K.) 447, 573 (2007).

    Article  ADS  Google Scholar 

  44. R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva, Nat. Phys. 8, 199 (2012).

    Article  Google Scholar 

  45. H. González-Herrero, J. M. Gómez-Rodriguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M. M. Ugeda, J.-Y. Veuillen, F. Yndurain, and I. Brihuega, Science (Washington, DC, U. S.) 352, 437 (2016).

    Article  ADS  Google Scholar 

  46. Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, Phys. Rev. Lett. 114, 016603 (2015).

    Article  ADS  Google Scholar 

  47. P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, and R. Fasel, Nature (London, U.K.) 531, 489 (2016).

    Article  ADS  Google Scholar 

  48. Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London, U.K.) 444, 347 (2006).

    Article  ADS  Google Scholar 

  49. D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74, 155426 (2006).

    Article  ADS  Google Scholar 

  50. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Nat. Nanotechnol. 4, 383 (2009).

    Article  ADS  Google Scholar 

  51. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, Cambridge, UK, 2012).

    Book  Google Scholar 

  52. R. Balog, B. Jörgensen, L. Nilsson, et al., Nat. Mater. 9, 315 (2010).

    Article  ADS  Google Scholar 

  53. M. Z. Hossain, M. A. Walsh, and M. C. Hersam, J. Am. Chem. Soc. 132, 15399 (2010).

    Article  Google Scholar 

  54. D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Büchner, and A. Grüneis, Nano Lett. 10, 3360 (2010).

    Article  ADS  Google Scholar 

  55. R. Phillipson, C. J. Lockhart de la Rosa, J. Teyssandier, P. Walke, D. Waghray, Y. Fujita, J. Adisoejoso, K. S. Mali, I. Asselberghs, C. Huyghebaert, H. Uji-i, S. de Gendt, and S. de Feyter, Nanoscale 8, 20017 (2016).

    Article  Google Scholar 

  56. M. Garnica, D. Stradi, S. Barja, F. Calleja, C. Diaz, M. Alcami, N. Martin, A. L. Vázquez de Parga, F. Martin, and R. Miranda, Nat. Phys. 9, 368 (2013).

    Article  Google Scholar 

  57. K. S. Mali, J. Greenwood, J. Adisoejoso, R. Phillipson, and S. de Feyter, Nanoscale 7, 1566 (2015).

    Article  ADS  Google Scholar 

  58. J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Ivasenko, W. Vanderlinden, H. van Gorp, W. Frederickx, G. Lu, K. Tahara, Y. Tobe, H. Uji-i, S. F. L. Mertens, and S. de Feyter, ACS Nano 9, 5520 (2015).

    Article  Google Scholar 

  59. G. Bottari, M. A. Herranz, L. Wibmer, M. Volland, L. Rodriguez-Perez, D. M. Guldi, A. Hirsch, N. Martin, F. D’Souza, and T. Torres, Chem. Soc. Rev. 46, 4464 (2017).

    Article  Google Scholar 

  60. S. Eigler and A. Hirsch, Angew. Chem., Int. Ed. Engl. 53, 7720 (2014).

    Article  Google Scholar 

  61. A. Criado, M. Melchionna, S. Marchesan, and M. Prato, Angew. Chem. Int. Ed. Engl. 54, 10734 (2015).

    Article  Google Scholar 

  62. Y.-F. Zhang, Y. Zhang, G. Li, J. Lu, Y. Que, H. Chen, R. Berger, X. Feng, K. Müllen, X. Lin, Y.-Y. Zhang, S. Du, S. T. Pantelides, and H.-J. Gao, Nano Res. 10, 3377 (2017).

    Article  Google Scholar 

  63. D. P. Martin, A. Tariq, B. D. O. Richards, G. Jose, S. A. Krasnikov, A. Kulak, and N. N. Sergeeva, Chem. Commun. 53, 10715 (2017).

    Article  Google Scholar 

  64. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  65. J. Ren, S. Meng, Y. -L. Wang, X.-C. Ma, Q.-K. Xue, and E. Kaxiras, J. Chem. Phys. 134, 194706 (2011).

    Article  ADS  Google Scholar 

  66. J. L. Yang, S. Schumann, R. A. Hatton, and T. S. Jones, Org. Electron. 11, 1399 (2010).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 17-02-01139, 17-02-01291, and 20-02-00489).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Aristov or A. N. Chaika.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, V.Y., Chaika, A.N., Molodtsova, O.V. et al. Nanostructured Graphene on β-SiC/Si(001): Atomic and Electronic Structures, Magnetic and Transport Properties (Brief Review). Jetp Lett. 113, 176–193 (2021). https://doi.org/10.1134/S0021364021030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021030036

Navigation