Skip to main content
Log in

Threshold Effect in the Photoemission of Composite Nanoantennas Irradiated by Intense Femtosecond Laser Pulses

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A new mechanism has been proposed for the formation of energy spectra of photoelectrons by above-threshold photoemission of composite nanoantennas with small gaps between elements irradiated by femtosecond laser pulses. According to this mechanism, a photoelectron can be rescattered under certain conditions not only by a “parent” element of the composite nanoantenna but also by a neighboring element. As a result, the upper edge of the plateau region in the energy spectra of photoelectrons increases strongly. Relations between the parameters determining the efficiency of the process have been found. The mechanism proposed is promising for the development of efficient compact sources of high-energy attosecond electron beams and ultrashort X-ray pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  2. R. Kienberger, Z. Chang, and C. H. Nam, J. Phys. B: At. Mol. Opt. Phys. 45, 070201 (2012).

    Article  ADS  Google Scholar 

  3. F. Krausz and M. I. Stockman, Nat. Photon. 8, 205 (2014).

    Article  ADS  Google Scholar 

  4. S. Chatziathanasiou, S. Kahaly, E. Skantzakis, G. Sansone, R. Lopez-Martens, S. Haessler, K. Varju, G. D. Tsakiris, D. Charalambidis, and P. Tzallas, Photonics 4, 26 (2017).

    Article  Google Scholar 

  5. P. Peng, C. Marceau, and D. M. Villeneuve, Nat. Rev. Phys. 1, 144 (2019).

    Article  Google Scholar 

  6. M. Krüger, M. Schenk, and P. Hommelhoff, Nature (London, U.K.) 475, 78 (2011).

    Article  Google Scholar 

  7. G. Wachter, S. Kahaly, E. Skantzakis, G. Sansone, R. Lopez-Martens, S. Haessler, K. Varju, G. D. Tsakiris, D. Charalambidis, and P. Tzallas, Phys. Rev. B 86, 035402 (2012).

    Article  ADS  Google Scholar 

  8. M. Krüger, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, J. Phys. B: At. Mol. Opt. Phys. 51, 172001 (2018).

    Article  ADS  Google Scholar 

  9. P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).

    Article  ADS  Google Scholar 

  10. P. Rácz, Z. Pápa, I. Márton, J. Budai, P. Wróbel, T. Stefaniuk, C. Prietl, J. R. Krenn, and P. Dombi, Nano Lett. 17, 1181 (2017).

    Article  ADS  Google Scholar 

  11. Attosecond Nanophysics. From Basic Science to Applications., Ed. by P. Hommelhoff and M. F. Kling (Wiley-VCH, Weinheim, Germany, 2015).

    Google Scholar 

  12. M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, et al, Rep. Prog. Phys. 80, 054401 (2017).

    Article  ADS  Google Scholar 

  13. F. Süßmann, L. Seiffert, S. Zherebtsov, et al, Nat. Commun. 6, 7944 (2015).

    Article  ADS  Google Scholar 

  14. S. Zherebtsov, T. Fennel, J. Plenge, et al, Nat. Phys. 7, 656 (2011).

    Article  Google Scholar 

  15. Z. Wang, A. C. Garibay, H. Park, U. Saalmann, P. Agostini, J. M. Rost, and L. F. DiMauro, Phys. Rev. Lett. 124, 173201 (2020).

    Article  ADS  Google Scholar 

  16. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, K. R. Simovski, and Yu. S. Kivshar, Phys. Usp. 56, 539 (2013).

    Article  ADS  Google Scholar 

  17. https://meep.readthedocs.io.

  18. A. D. Kondorskiy and S. Nanbu, J. Chem. Phys. 143, 114103 (2015).

    Article  ADS  Google Scholar 

  19. A. Kondorskiy, S. Nanbu, Y. Teranishi, and H. Nakamura, J. Phys. Chem. A 114, 6171 (2010).

    Article  Google Scholar 

  20. T. Murakami, M. Nakazono, A. Kondorskiy, T. Ishida, and S. Nanbu, Phys. Chem. Chem. Phys. 14, 11546 (2012).

    Article  Google Scholar 

  21. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).

    MATH  Google Scholar 

  22. R. H. Fowler and Dr. L. Nordheim, Proc. R. Soc. London, Sect. A 119, 173 (1928).

    Article  ADS  Google Scholar 

  23. S. V. Yalunin, M. Gulde, and C. Ropers, Phys. Rev. B 84, 195426 (2011).

    Article  ADS  Google Scholar 

  24. W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 648 (Appendix) (1982).

    Article  Google Scholar 

  25. Handbook of Optical Constants of Solids II, Ed. by E. D. Palik (Academic, San Diego, USA, 1991).

    Google Scholar 

  26. K. S. Kislov, A. A. Narits, and A. D. Kondorskii, Bull. Lebedev Phys. Inst. 44, 192 (2017).

    Article  ADS  Google Scholar 

  27. M. Agio and A. Alù, Optical Antennas (Cambridge Univ. Press, New York, 2013).

    Google Scholar 

Download references

Acknowledgments

I am grateful to V.S. Lebedev, K.S. Kislov, and A.A. Narits for valuable remarks and discussion.

Funding

This work was supported by the Russian Science Foundation (project no. 19-79-30086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kondorskiy.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 11, pp. 736–742.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondorskiy, A.D. Threshold Effect in the Photoemission of Composite Nanoantennas Irradiated by Intense Femtosecond Laser Pulses. Jetp Lett. 112, 699–704 (2020). https://doi.org/10.1134/S0021364020230071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020230071

Navigation