Skip to main content
Log in

Kinetic Model of Softening of Glasses

  • Discussion
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A liquid-glass transition (vitrification) has been analyzed in terms of the softening of a solid phase through diffusion jumps. It has been shown that the assumption of a Gibbs momentum distribution (in fact, local thermalization) in glass automatically results in the existence of diffusion in glasses at any temperatures. In view of this conclusion, the possibility of a virtual “thermodynamic” transition responsible for vitrification is questionable. A model of jumps of “hot” particles has been proposed that predicts the existence of two characteristic temperatures TA and TB and describes qualitative changes in the temperature dependence of the viscosity of a liquid upon cooling (“Arrhenius”—“super-Arrhenius”—“Arrhenius”). The temperatures TA and TB are related to the number of particles in the first coordination sphere and the number of particles in the region of structural correlations (intermediate order region) in disordered media. The concept of ergodicity is discussed in application to glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Tropin, J. W. Schmelzer, and V. L. Aksenov, Phys. Usp. 59, 42 (2016).

    Article  ADS  Google Scholar 

  2. D. S. Sanditov and M. I. Ojovan, Phys. Usp. 62, 111 (2019).

    Article  ADS  Google Scholar 

  3. G. Parisi, P. Urbani, and F. Zamponi, Theory of Simple Glasses (Cambridge Univ. Press, Cambridge, 2020).

    Book  Google Scholar 

  4. V. S. Dotsenko, Phys. Usp. 36, 455 (1993).

    Article  ADS  Google Scholar 

  5. W. Götze, J. P. Hansen, D. Levesque, and J. Zinn-Justin, Liquids., Freezing and the Glass Transition (North-Holland, Amsterdam, 1992).

    Google Scholar 

  6. H. Osada, Probab. Theory Relat. Fields 112, 53 (1998).

    Article  Google Scholar 

  7. K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119, 1181 (2003).

    Article  ADS  Google Scholar 

  8. T. R. Kirkpatric, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).

    Article  ADS  Google Scholar 

  9. A. Wisitorasak and P. G. Wolynes, J. Phys. Chem. B 118, 7835 (2014).

    Article  Google Scholar 

  10. J. Khouri and G. P. Johari, J. Chem. Phys. 138, 2013 (2013).

    Article  Google Scholar 

  11. J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Proc. Natl. Acad. Sci. U. S. A. 106, 19780 (2009).

    Article  ADS  Google Scholar 

  12. G. M. Zaslavskii, Stochasticity of Dynamic Systems (Nauka, Moscow, 1985).

    Google Scholar 

  13. A. M. Kosevich and A. S. Kovalev, Introduction to Nonlinear Physical Mechanics (Nauk. Dumka, Kiev, 1989) [in Russian].

    MATH  Google Scholar 

  14. L. D. Landau, E. M. Livshits, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  15. V. E. Zakharov and R. V. Shamin, JETP Lett. 96, 66 (2012).

    Article  ADS  Google Scholar 

  16. V. P. Ruban, J. Exp. Theor. Phys. 120, 925 (2015).

    Article  ADS  Google Scholar 

  17. V. A. Popova and N. Surovtsev, Phys. Rev. E 90, 032308 (2014).

    Article  ADS  Google Scholar 

  18. N. Surovtsev, S. V. Adichtchev, and V. K. Malinovsky, Phys. Rev. E 76, 031502 (2007).

    Article  ADS  Google Scholar 

  19. M. Ronald, Soft Matter 4, 2316 (2008).

    Article  ADS  Google Scholar 

  20. V. N. Novikov and A. P. Sokolov, Phys. Rev. E 92, 062304 (2015).

    Article  ADS  Google Scholar 

  21. F. Stickel, E. W. Fischer, and R. Richet, J. Chem. Phys. 104, 2043 (1996).

    Article  ADS  Google Scholar 

  22. S. Hansen, F. Stickel, R. Richet, and E. W. Fischer, J. Chem. Phys. 108, 6408 (1998).

    Article  ADS  Google Scholar 

  23. K. Trachenko, J. Phys.: Condens. Matter 23, 366003 (2011).

    Google Scholar 

  24. V. V. Brazhkin, Phys. Usp. 49, 719 (2006).

    Article  ADS  Google Scholar 

  25. K. Trachenko and V. V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009).

    ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to K. Trachenko, V.N. Ryzhov, and N.V. Surovtsev for stimulating discussions and to I.V. Danilov and P.V. Enkovich for assistance in the preparation of the manuscript.

Funding

This work was supported by the Russian Science Foundation (project no. 19-12-00111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brazhkin.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 11, pp. 787–793.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazhkin, V.V. Kinetic Model of Softening of Glasses. Jetp Lett. 112, 745–751 (2020). https://doi.org/10.1134/S0021364020230058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020230058

Navigation