Skip to main content
Log in

Constraint on a New Short-Range Spin—Orbit Interaction from Neutron Diffraction Data for a Noncentrosymmetric Crystal

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A constraint \(g_{A}^{2}\leq 4.5\times10^{-24}\big(g^{2}+1/\lambda_{A}^{2}\big)\) on the constant gA of a new short-range (spin—orbit) interaction between nucleons, which is due to the exchange by a light spin-1 boson with the mass mA = ħAc, has been obtained from experimental data on the transmission of neutrons through a noncentrosymmetric perfect crystal near the Bragg reflection characterized by the reciprocal lattice vector g. This constraint is the best in the interaction radius range λA = 10−12−10−5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schmidt, and H. E. Swanson, Phys. Rev. D 70, 042004 (2004).

    Article  ADS  Google Scholar 

  2. E. G. Adelberger, B. R. Heckel, and A. E. Nelson, Ann. Rev. Nucl. Part. Sci. 53, 77 (2003).

    Article  ADS  Google Scholar 

  3. A. P. Serebrov, P. Geltenbort, O. M. Zherebtsov, S. V. Sbitnev, V. E. Varlamov, A. V. Vassiljev, M. S. Lasakov, I. A. Krasnoschekova, and S. N. Ivanov, JETP Lett. 97, 676 (2013).

    Article  ADS  Google Scholar 

  4. J.-Ph. Karr and D. Marchand, Nature (London, U.K.) 575, 61 (2019).

    Article  ADS  Google Scholar 

  5. D. S. Firak, A. J. Krasznahorkay, and M. Csatlós, EPJ Web of Conf. 232, 04005 (2020).

    Article  Google Scholar 

  6. Th. Blum, A. Denig, I. Logashenko, E. de Rafael, B. Lee Roberts, Th. Teubner, and G. Venanzoni, arX-iv:1311.2198 [hep-ph] (2013).

  7. I. Antoniadis, S. Baessler, M. Buchner, V. V. Fedorov, S. Hoedl, A. Lambrecht, V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, S. Reynaud, and Yu. Sobolev, C. R. Phys. 12, 755 (2011).

    Article  ADS  Google Scholar 

  8. J. Murata and S. Tanaka, Class. Quantum Grav. 32, 033001 (2015).

    Article  ADS  Google Scholar 

  9. B. A. Dobrescu and I. Mocioiu, J. High Energy Phys. 11, 005 (2006).

    Article  ADS  Google Scholar 

  10. F. M. Piegsa and G. Pignol, Phys. Rev. Lett. 108, 181801 (2012).

    Article  ADS  Google Scholar 

  11. V. L. Alekseev, E. G. Lapin, E. K. Leushkin, V. L. Rumyantsev, O. I. Sumbaev, and V. V. Fedorov, Sov. Phys. JETP 67, 1727 (1988).

    Google Scholar 

  12. V. L. Alekseev, V. V. Voronin, E. G. Lapin, E. K. Leushkin, V. L. Rumyantsev, O. I. Sumbaev, and V. V. Fedorov, Sov. Phys. JETP 69, 1083 (1989).

    Google Scholar 

  13. V. V. Fedorov, in Proceedings of the 26th Winter School of LIYaF on Physics of Elementary Particles (1991), p. 65.

  14. V. V. Fedorov, V. V. Voronin, and E. G. Lapin, J. Phys. G 18, 1133 (1992).

    Article  ADS  Google Scholar 

  15. V. V. Fedorov, I. A. Kuznetsov, E. G. Lapin, S. Yu. Semenikhin, and V. V. Voronin, Phys. B (Amsterdam, Neth.) 385–386, 1216 (2006).

    Article  Google Scholar 

  16. V. V. Voronin, V. V. Fedorov, and I. A. Kuznetsov, JETP Lett. 90, 5 (2009).

    Article  ADS  Google Scholar 

  17. V. V. Fedorov, I. A. Kuznetsov, E. G. Lapin, S. Yu. Semenikhin, V. V. Voronin, Yu. P. Braginetz, and K. Yu. Amosov, Nucl. Instrum. Methods Phys. Res., Sect. A 593, 472 (2008).

    Article  ADS  Google Scholar 

  18. S. Yu. Semenikhin, Yu. P. Braginets, V. V. Voronin, I. A. Kuznetsov, E. G. Lapin, V. V. Fedorov, Ya. A. Berdnikov, A. Ya. Berdnikov, and E. O. Vezhlev, Tech. Phys. 56, 386 (2011).

    Article  Google Scholar 

  19. G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, Phys. Rev. Lett. 103, 261801 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Shapiro.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 10, pp. 639–643.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-32-90202).

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronin, V.V., Fedorov, V.V. & Shapiro, D.D. Constraint on a New Short-Range Spin—Orbit Interaction from Neutron Diffraction Data for a Noncentrosymmetric Crystal. Jetp Lett. 112, 597–601 (2020). https://doi.org/10.1134/S0021364020220142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020220142

Navigation