Skip to main content
Log in

Observation of the Photoinduced Conductivity in a Regular Domain Structure with Tilted Walls in MgO:LiNbO3 at a Wavelength of 632.8 nm at Bragg Diffraction

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A 632.8-nm radiation-induced change in the conductivity of a regular domain structure (RDS) formed in a 5% MgO:LiNbO3 crystal has been detected for the first time. As a result, the relaxation rate for the Bragg diffraction efficiency on the RDS, which is observed after the application of an external electric field, increases with the intensity of a probe beam. This dependence is linear in the initial stage of relaxation caused by the screening of the external field because of the redistribution of charges over tilted conductive domain walls of the RDS. For the probe beam with an intensity of 49 mW/mm2, the induced effective conductivity of the RDS, which is estimated as σeff = 3.5×10−9Ω−1m−1, is more than four orders of magnitude higher than the dark conductivity of the single-domain MgO:LiNbO3 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferroelectric Crystals for Photonic Applications, Ed. by P. Ferrari, S. Grilli, and P. De Natale (Springer, Berlin, Heidelberg, 2014).

    Google Scholar 

  2. A. V. Nikandrov and A. S. Chirkin, JETP Lett. 76, 275 (2002).

    Article  ADS  Google Scholar 

  3. G. D. Laptev, A. A. Novikov, and A. S. Chirkin, JETP Lett. 78, 38 (2003).

    Article  ADS  Google Scholar 

  4. A. N. Tuchak, G. N. Gol’tsman, G. Kh. Kitaeva, A. N. Penin, S. V. Seliverstov, M. I. Finkel’, A. V. Shepelev, and P. V. Yakunin, JETP Lett. 96, 94 (2012).

    Article  ADS  Google Scholar 

  5. L. A. Rios, C. E. Minor, N. A. Barboza, and R. S. Cudney, Opt. Express 26, 17591 (2018).

    Article  ADS  Google Scholar 

  6. T. Ding, Y. Zheng, and X. Chen, Opt. Lett. 44, 1524 (2019).

    Article  ADS  Google Scholar 

  7. M. Yamada, Rev. Sci. Instrum. 71, 4010 (2000).

    Article  ADS  Google Scholar 

  8. I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, Opt. Lett. 41, 4174 (2016).

    Article  ADS  Google Scholar 

  9. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).

    Article  ADS  Google Scholar 

  10. V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Appl. Phys. Rev. 2, 040604 (2015).

    Article  Google Scholar 

  11. P. S. Bednyakov, B. I. Sturman, T. Sluka, A. K. Tagantsev, and P. V. Yudin, NPJ Comput. Mater. 4, 65 (2018).

    Article  ADS  Google Scholar 

  12. M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, Mater. Res. Express 1, 035012 (2014).

    Article  ADS  Google Scholar 

  13. M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, Adv. Funct. Mater. 22, 3936 (2012).

    Article  Google Scholar 

  14. C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soegel, C. Razzaghi, and I. Breunig, Sci. Rep. 7, 9862 (2017).

    Article  ADS  Google Scholar 

  15. A. A. Esin, A. R. Akhmatkhanov, and V. Ya. Shur, Appl. Phys. Lett. 114, 092901 (2019).

    Article  ADS  Google Scholar 

  16. V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, and A. A. Esin, Appl. Phys. Lett. 103, 102905 (2013).

    Article  ADS  Google Scholar 

  17. T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, Appl. Phys. Lett. 110, 132905 (2017).

    Article  ADS  Google Scholar 

  18. M. Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 13, 3408 (2005).

    Article  ADS  Google Scholar 

  19. E. N. Savchenkov, S. M. Shandarov, S. V. Smirnov, A. A. Esin, A. R. Akhmatkhanov, and V. Ya. Shur, JETP Lett. 110, 178 (2019).

    Article  ADS  Google Scholar 

  20. H. Kogelnik, Bell Syst. Tech. J. 49, 2909 (1969).

    Article  ADS  Google Scholar 

  21. S. M. Shandarov, E. N. Savchenkov, M. V. Borodin, A. E. Mandel, A. R. Akhmatkhanov, and V. Ya. Shur, Ferroelectrics 542, 58 (2019).

    Article  Google Scholar 

  22. M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21, 857 (1996).

    Article  ADS  Google Scholar 

  23. B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P. G. Kazansky, J. Opt. Soc. Am. B 14, 2641 (1997).

    Article  ADS  Google Scholar 

  24. T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, Heidelberg, 2008).

    Google Scholar 

  25. M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, and M. D. Fontana, J. Phys.: Conf. Ser. 416, 012002 (2013).

    Google Scholar 

  26. M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, J. Appl. Phys. 98, 064104 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to S.V. Smirnov and A.I. Brunev for assistance in the experiments and useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Savchenkov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 10, pp. 644–649.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. FEWM-2020-0038/3 for 2020–2022).

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenkov, E.N., Dubikov, A.V., Sharaeva, A.E. et al. Observation of the Photoinduced Conductivity in a Regular Domain Structure with Tilted Walls in MgO:LiNbO3 at a Wavelength of 632.8 nm at Bragg Diffraction. Jetp Lett. 112, 602–606 (2020). https://doi.org/10.1134/S0021364020220129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020220129

Navigation