Skip to main content
Log in

Universal T/B Scaling Behavior of Heavy Fermion Compounds (Brief Review)

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In this brief review, we address manifestations of the T/B scaling behavior of heavy-fermion (HF) compounds, where T and B are the temperature and magnetic field, respectively. Using experimental data and the fermion condensation theory, we show that this scaling behavior is typical of HF compounds including HF metals, quasicrystals, and quantum spin liquids. We demonstrate that such scaling behavior holds down to the lowest temperature and field values, so that T/B varies in a wide range, provided the HF compound is located near the topological fermion condensation quantum phase transition (FCQPT). Due to the topological properties of FCQPT, the effective mass M* exhibits a universal behavior, and diverges as T goes to zero. Such a behavior of M* has important technological applications. We also explain how to extract the universal scaling behavior from experimental data collected on different heavy-fermion compounds. As an example, we consider the HF metal YbCo2Ge4, and show that its scaling behavior is violated at low temperatures. Our results obtained show good agreement with experimental facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  2. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  3. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  4. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).

    Article  ADS  Google Scholar 

  5. G. E. Volovik, JETP Lett. 107, 516 (2018).

    Article  ADS  Google Scholar 

  6. V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).

    Article  ADS  Google Scholar 

  7. M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds, Vol. 182 of Springer Series in Solid-State Sciences (Springer, Berlin, 2015).

    Google Scholar 

  8. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B 93, 205126 (2016).

    Article  ADS  Google Scholar 

  9. M. Ya. Amusia and V. R. Shaginyan, Stronlgly Correlated Fermi Systems: A New State of Matter, Vol. 283 of Springer Tracts in Modern Physics (Springer, Berlin, 2020).

    Book  Google Scholar 

  10. Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, Science (Washington, DC, U. S.) 331, 316 (2011).

    Article  ADS  Google Scholar 

  11. T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Science (Washington, DC, U. S.) 349, 506 (2015).

    Article  ADS  Google Scholar 

  12. A. Sakai, K. Kitagawa, K. Matsubayashi, M. Iwatani, and P. Gegenwart, Phys. Rev. B 94, 041106(R) (2016).

    Article  ADS  Google Scholar 

  13. Y. Komijani and P. Coleman, Phys. Rev. Lett. 122, 217001 (2019).

    Article  ADS  Google Scholar 

  14. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Butterworth-Heinemann, Oxford, 1996).

    Google Scholar 

  15. V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Phys. Rev. B 88, 115103 (2013).

    Article  ADS  Google Scholar 

  16. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 90, 628 (2010).

    Article  ADS  Google Scholar 

  17. C. M. Varma, Phys. Rev. Lett. 55, 2723 (1985).

    Article  ADS  Google Scholar 

  18. V. R. Shaginyan, Phys. Lett. A 249, 237 (1998).

    Article  ADS  Google Scholar 

  19. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).

    Article  ADS  Google Scholar 

  20. S. Link, S. Forti, A. Stöhr, K. Ksüter, M. Rösner, D. Hirschmeier, C. Chen, J. Avila, M. C. Asensio, A. A. Zakharov, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, and U. Starke, Phys. Rev. B 100, 121407(R) (2019).

    Article  ADS  Google Scholar 

  21. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. At. Nucl. 74, 1237 (2011).

    Article  Google Scholar 

  22. L. D. Landau, Sov. Phys. JETP 3, 920 (1956).

    Google Scholar 

  23. J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B 71, 012401 (2005).

    Article  ADS  Google Scholar 

  24. E. M. Lifshitz and L. Pitaevskii, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Butterworth-Heinemann, Oxford, 2002).

    Google Scholar 

  25. V. A. Khodel, M. V. Zverev, and J. W. Clark, JETP Lett. 81, 315 (2005).

    Article  ADS  Google Scholar 

  26. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Phys. Rev. B 87, 245122 (2013).

    Article  ADS  Google Scholar 

  27. R. Widmer, P. Gröning, M. Feuerbacher, and O. Gröning, Phys. Rev. B 79, 104202 (2009).

    Article  ADS  Google Scholar 

  28. K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H. Takakura, and T. Ishimasa, Nat. Mater. 11, 1013 (2012).

    Article  ADS  Google Scholar 

  29. T. Fujiwara and T. Yokokawa, Phys. Rev. Lett. 66, 333 (1991).

    Article  ADS  Google Scholar 

  30. T. Fujiwara, S. Yamamoto, and G. T. de Laissardière, Phys. Rev. Lett. 71, 4166 (1993).

    Article  ADS  Google Scholar 

  31. V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane, P. Schuck, J. W. Clark, M. Ya. Amusia, G. S. Japaridze, K. G. Popov, and E. V. Kirichenko, J. Low Temp. Phys. 189, 410 (2017).

    Article  ADS  Google Scholar 

  32. A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. v. Löhneysen, E. Bucher, R. Ramazashvili, and P. Coleman, Nature (London, U.K.) 407, 351 (2000).

    Article  ADS  Google Scholar 

  33. J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Qiu, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 104, 147201 (2010).

    Article  ADS  Google Scholar 

  34. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Lett. A 377, 2800 (2013).

    Article  ADS  Google Scholar 

  35. D. Takahashi, S. Abe, H. Mizuno, D. Tayurskii, K. Matsumoto, H. Suzuki, and Y. Onuki, Phys. Rev. B 67, 180407(R) (2003).

    Article  ADS  Google Scholar 

  36. J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 98, 107204 (2007).

    Article  ADS  Google Scholar 

  37. V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Phys. Rev. B 84, 060401(R) (2011).

    Article  ADS  Google Scholar 

  38. V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane, G. S. Japaridze, J. W. Clark, M. Ya. Amusia, and E. V. Kirichenko, J. Mater. Sci. 55, 2257 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to V.A. Khodel for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Shaginyan.

Additional information

Funding

This work was partly supported by U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research. J.W. Clark is indebted to the University of Madeira for gracious hospitality during periods of extended residence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaginyan, V.R., Msezane, A.Z., Clark, J.W. et al. Universal T/B Scaling Behavior of Heavy Fermion Compounds (Brief Review). Jetp Lett. 112, 657–665 (2020). https://doi.org/10.1134/S0021364020220026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020220026

Navigation