Skip to main content

Features of the Coupled Nuclear–Electron Spin Precession in the Bose–Einstein Condensate of Magnons

Abstract

The experimental detection of the Bose-Einstein condensate of magnons in coupled nuclear-electron spin precession in antiferromagnets brings the prospect of its use for magnonics and computer calculations. In particular, an attractive feature of such systems is a relatively large spin coherence time compared to traditional iron yttrium garnet samples. However, the observed Bose-Einstein condensation of magnons contradicts the Suhl-Nakamura model and the Bloch equations, which are usually used for these systems. The results of a direct experiment in antiferromagnetic MnCO3 performed in this work indicate that the Suhl-Nakamura model and the Bloch equations cannot adequately describe the coupled nuclear-electron spin motion at large levels of magnon excitation.

This is a preview of subscription content, access via your institution.

References

  1. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature (London, U.K.) 464, 262 (2010).

    ADS  Article  Google Scholar 

  2. A. Khitun, M. Bao, and K. L. Wang, J. Phys. D: Appl. Phys. 43, 264005 (2010).

    ADS  Article  Google Scholar 

  3. D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y. Nakamura, Appl. Phys. Express 12, 070101 (2019).

    ADS  Article  Google Scholar 

  4. B. Rana and Y. Otani, Commun. Phys. 2, 90 (2019).

    Article  Google Scholar 

  5. Yu. M. Bunkov and G. E. Volovik, Spin Superfluidity and Magnon BEC (Novel Superfluids), Ed. by K. H. Bennemann and J. B. Ketterson (Oxford Univ. Press, Oxford, 2013).

  6. Yu. M. Bunkov, J. Low Temp. Phys. 183, 399 (2016).

    ADS  Article  Google Scholar 

  7. Yu. M. Bunkov, SPIN 9, 1940005 (2019). https://doi.org/10.1142/S2010324719400058

    ADS  Article  Google Scholar 

  8. F. Arute, K. Arya, R. Babbush, et al., Nature (London, U.K.) 574, 505 (2019).

    ADS  Article  Google Scholar 

  9. J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Phys. Rev. Lett. 117, 133602 (2016).

    ADS  Article  Google Scholar 

  10. L. V. Abdurakhimov, D. Konstantinov, and Yu. M. Bunkov, Phys. Rev. Lett. 114, 226402 (2015).

    ADS  Article  Google Scholar 

  11. Yu. M. Bunkov, S. N. Fisher, A. M. Guenault, and G. R. Pickett, Phys. Rev. Lett. 69, 3092 (1992).

    ADS  Article  Google Scholar 

  12. S. Autti, V. B. Eltsov, and G. E. Volovik, Phys. Rev. Lett. 120, 215301 (2018).

    ADS  Article  Google Scholar 

  13. S. N. Fisher, G. R. Pickett, P. Skyba, and N. Suramlishvili, Phys. Rev. B 86, 024506 (2012).

    ADS  Article  Google Scholar 

  14. Yu. M. Bunkov, P. M. Vetoshko, A. N. Kuzmichev, G. V. Mamin, S. B. Orlinskii, T. R. Safin, V. I. Belotelov, and M. S. Tagirov, JETP Lett. 111, 62 (2020).

    ADS  Article  Google Scholar 

  15. H. Suhl, Phys. Rev. 109, 606 (1958).

    ADS  Article  Google Scholar 

  16. T. Nakamura, Prog. Theor. Phys. (Kyoto) 20, 542 (1958).

    ADS  Article  Google Scholar 

  17. P. G. De Gennes, P. A. Pincus, F. Hartmann-Boutron, and J. M. Winter, Phys. Rev. 129, 1105 (1963).

    ADS  Article  Google Scholar 

  18. L. V. Abdurakhimov, M. A. Borich, Yu. M. Bunkov, R. R. Gazizulin, D. Konstantinov, M. I. Kurkin, and A. P. Tankeyev, Phys. Rev. B 97, 024425 (2018).

    ADS  Article  Google Scholar 

  19. Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, V. V. Kuzmin, V. S. L’vov, and M. S. Tagirov, Phys. Rev. Lett. 108, 177002 (2012).

    ADS  Article  Google Scholar 

  20. G. L. Witt and A. M. Portis, Phys. Rev. 135, 1616 (1964).

    ADS  Article  Google Scholar 

  21. V. A. Tulin, Sov. Phys. JETP 55, 831 (1968).

    Google Scholar 

  22. L. A. Prozorova and A. I. Smirnov, Sov. Phys. JETP 40, 970 (1975).

    ADS  Google Scholar 

  23. A. S. Borovik-Romanov, Yu. M. Bunkov, and B. S. Dumesh, Physica (Amsterdam, Neth.) 86, 1301 (1977).

    Google Scholar 

  24. A. S. Borovik-Romanov, Yu. M. Bunkov, B. S. Dumesh, M. I. Kurkin, M. P. Petrov, and V. P. Chekmarev, Sov. Phys. Usp. 142, 537 (1984).

    Article  Google Scholar 

  25. Yu. M. Bunkov and B. S. Dumesh, Sov. Phys. JETP 41, 576 (1975).

    ADS  Google Scholar 

  26. Yu. M. Bunkov and V. V. Dmitriev, Sov. Phys. JETP 53, 1237 (1981).

    Google Scholar 

  27. Yu. M. Bunkov, JETP Lett. 23, 244 (1976).

    ADS  Google Scholar 

  28. Yu. M. Bunkov and S. O. Gladkov, Sov. Phys. JETP 46, 1141 (1977).

    ADS  Google Scholar 

  29. Yu. M. Bunkov and T. V. Maksimchuk, Sov. Phys. JETP 52, 711 (1980).

    ADS  Google Scholar 

  30. Yu. M. Bunkov, Phys. Usp. 53, 843 (2010).

    ADS  Article  Google Scholar 

  31. E. A. Turov, M. I. Kurkin, and V. V. Nikolaev, Sov. Phys. JETP 37, 147 (1973).

    ADS  Google Scholar 

  32. V. A. Tulin, Sov. Phys. JETP 78, 149 (1980).

    Google Scholar 

  33. M. I. Kurkin, Yu. G. Raidugin, V. N. Sedyshkin, and A. P. Tankeev, Sov. Phys. Sol. State 32, 923 (1990).

    Google Scholar 

  34. Yu. M. Bunkov, V. V. Dmitriev, B. S. Dumesh, and Yu. M. Mukharskiy, Sov. Phys. JETP 57, 193 (1983).

    Google Scholar 

  35. M. A. Borich, Yu. M. Bunkov, M. I. Kurkin, and A. P. Tankeev, JETP Lett. 105, 21 (2017).

    ADS  Article  Google Scholar 

  36. T. Sato, T. Kunimatsu, K. Izumina, A. Matsubara, M. Kubota, T. Mizusaki, and Yu. M. Bunkov, Phys. Rev. Lett. 101, 055301 (2008).

    ADS  Article  Google Scholar 

  37. P. Hunger, Yu. M. Bunkov, E. Collin, and H. Godfrin, J. Low Temp. Phys. 158, 129 (2010).

    ADS  Article  Google Scholar 

  38. E. M. Alakshin, Yu. M. Bunkov, R. R. Gazizulin, L. I. Isaenko, A. V. Klochkov, T. R. Safin, K. R. Safiullin, M. S. Tagirov, and S. A. Zhurkov, J. Phys.: Conf. Ser. 568, 042001 (2014).

    Google Scholar 

  39. R. R. Gazizulin, Yu. M. Bunkov, and V. L. Safonov, JETP Lett. 102, 876 (2015).

    Article  Google Scholar 

  40. Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, V. V. Kuzmin, T. R. Safin, and M. S. Tagirov, JETP Lett. 94, 68 (2011).

    ADS  Article  Google Scholar 

  41. M. S. Tagirov, E. M. Alakshin, Yu. M. Bunkov, R. R. Gazizulin, S. A. Zhurkov, L. I. Isaenko, A. V. Klochkov, A. M. Sabitova, T. R. Safin, and K. R. Safiullin, J. Low Temp. Phys. 175, 167 (2014).

    ADS  Article  Google Scholar 

  42. Yu. M. Bunkov, A. V. Klochkov, T. R. Safin, K. R. Safiullin, and M. S. Tagirov, JETP Lett. 106, 677 (2017).

    ADS  Article  Google Scholar 

  43. Yu. M. Bunkov, A. V. Klochkov, T. R. Safin, K. R. Safiullin, and M. S. Tagirov, JETP Lett. 109, 43 (2019).

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00397. The experimental part of the work was performed at the Laboratory of Quantum Dynamics, supported by the Okinawa Institute of Science and Technology (OIST) Graduate University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Bunkov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 2, pp. 101–106.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bunkov, Y.M., Konstantinov, D. Features of the Coupled Nuclear–Electron Spin Precession in the Bose–Einstein Condensate of Magnons. Jetp Lett. 112, 95–100 (2020). https://doi.org/10.1134/S0021364020140076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020140076