Skip to main content
Log in

Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ1 (Nd, Dy)2(Fe, Co, Cu) 14B. After HPT at room temperature (THPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ1 phase with the melt at the temperature Teff= ∼1100°C. The thus determined Teff value is called the effective temperature. When the THPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe2B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ1+ Fe2B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature THPT, the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature Teff in the equilibrium phase diagram. The previously predicted decrease in Teff with an increase in THPT is observed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Borchers, C. Garve, M. Tiegel, M. Deutges, A. Herz, K. Edalati, R. Pippan, Z. Horita, and R. Kirchheim, Acta Mater. 97, 207 (2015).

    Google Scholar 

  2. S. Lee and Z. Horita, Mater. Trans. 53, 38 (2012).

    Google Scholar 

  3. K. Edalati, S. Toh, M. Watanabe, and Z. Horita, Scr. Mater. 66, 386 (2012).

    Google Scholar 

  4. J. M. Cubero-Sesin and Z. Horita, Mater. Trans. 53, 46 (2012).

    Google Scholar 

  5. K. Bryla, J. Morgiel, M. Faryna, K. Edalati, and Z. Horita, Mater. Lett. 212, 323 (2018).

    Google Scholar 

  6. B. B. Straumal, A. R. Kilmametov, A. A. Mazilkin, S. G. Protasova, K. I. Kolesnikova, P. B. Straumal, and B. Baretzky, Mater. Lett. 145, 63 (2015).

    Google Scholar 

  7. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, D. V. Gunderov, G. A. López, and B. Baretzky, Mater. Lett. 161, 735 (2015).

    Google Scholar 

  8. B. B. Straumal, A. R. Kilmametov, A. A. Mazilkin, A.S. Gornakova, O. B. Fabrichnaya, M. J. Kriegel, D. Rafaja, M. F. Bulatov, A. N. Nekrasov, and B. Baretzky, JETP Lett. 111, 624 (2020).

    Google Scholar 

  9. B. B. Straumal, A. A. Mazilkin, B. Baretzky, E. Rabkin, and R. Z. Valiev, Mater. Trans. 53, 63 (2012).

    Google Scholar 

  10. B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, O. A. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zieba, and B. Baretzky, Int. J. Mater. Res. 106, 657 (2015).

    Google Scholar 

  11. K. Edalati, D. J. Lee, T. Nagaoka, M. Arita, H. S. Kim, Z. Horita, and R. Pippan, Mater. Trans. 57, 533 (2016).

    Google Scholar 

  12. K. Edalati, Z. Horita, T. Furuta, and S. Kuramoto, Mater. Sci. Eng. A 559, 506 (2013).

    Google Scholar 

  13. K. Edalati and Z. Horita, Acta Mater. 59, 6831 (2011).

    Google Scholar 

  14. L. von Bertalanffy, Science (Washington, DC, U. S.) 111, 23 (1950).

    ADS  Google Scholar 

  15. B. B. Straumal, A. R. Kilmametov, A. Korneva, A. A. Mazilkin, P. B. Straumal, P. Zieba, and B. Baretzky, J. Alloys Compd. 707, 20 (2017).

    Google Scholar 

  16. B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Phillipp, O. A. Kogtenkova, M. N. Volkov, and R. Z. Valiev, Acta Mater. 52, 4469 (2004).

    Google Scholar 

  17. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, and R. Valiev, J. Mater. Sci. 47, 360 (2012).

    ADS  Google Scholar 

  18. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, L. Kurmanaeva, Yu. Ivanisenko, B. Baretzky, A. Korneva, P. Zieba, and D. A. Molodov, Mater. Lett. 118, 111 (2014).

    Google Scholar 

  19. X. Z. Liao, A. R. Kilmametov, R. Z. Valiev, H. Gao, X. Li, A. K. Mukherjee, J. F. Bingert, and Y. T. Zhu, Appl. Phys. Lett. 88, 021909 (2006).

    ADS  Google Scholar 

  20. H. Wen, R. K. Islamgaliev, K. M. Nesterov, R. Z. Valiev, and E. J. Lavernia, Philos. Mag. Lett. 93, 481 (2013).

    ADS  Google Scholar 

  21. K. Edalati, Y. Hashiguchi, P. H. R. Pereira, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A 714, 167 (2018).

    Google Scholar 

  22. M. Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T. G. Langdon, J. Mater. Res. Technolol. 6, 369 (2017).

    Google Scholar 

  23. A. A. Mazilkin, B. B. Straumal, M. V. Borodachenkova, R. Z. Valiev, O. A. Kogtenkova, and B. Baretzky, Mater. Lett. 84, 63 (2012).

    Google Scholar 

  24. S. K. Pabi, J. Joardar, and B. S. Murty, Proc. Ind. Natl. Sci. Acad. A 67, 1 (2001).

    Google Scholar 

  25. X. Sauvage, A. Chbihi, and X. Quelennec, J. Phys.: Conf. Ser. 240, 012003 (2010).

    Google Scholar 

  26. V. I. Levitas and O. M. Zarechnyy, Phys. Rev. B 82, 174123 (2010).

    ADS  Google Scholar 

  27. B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, O. A. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zieba, and B. Baretzky, Int. J. Mater. Res. 106, 657 (2015).

    Google Scholar 

  28. M. Javanbakht and V. I. Levitas, Phys. Rev. B 94, 214104 (2016).

    ADS  Google Scholar 

  29. V. I. Levitas, Mater. Trans. 60, 1294 (2019).

    Google Scholar 

  30. B. B. Straumal, A. A. Mazilkin, B. Baretzky, E. Rabkin, and R. Z. Valiev, Mater. Trans. 53, 63 (2012).

    Google Scholar 

  31. Y. Ivanisenko, I. MacLaren, X. Sauvage, R. Z. Valiev, and H.-J. Fecht, Acta Mater. 54, 1659 (2006).

    Google Scholar 

  32. M. T. Pérez-Prado and A. P. Zhilyaev, Phys. Rev. Lett. 102, 175504 (2009).

    ADS  Google Scholar 

  33. B. Feng and V. I. Levitas, Mater. Sci. Eng. A 680, 130 (2017).

    Google Scholar 

  34. K. Edalati, E. Matsubara, and Z. Horita, Metall. Mater. Trans. A 40, 2079 (2009).

    Google Scholar 

  35. B. Feng, V. I. Levitas, and M. Kamrani, Mater. Sci. Eng. A 731, 623 (2018).

    Google Scholar 

  36. Y. Ivanisenko, A. Kilmametov, H. Roesner, and R. Valiev, Int. J. Mater. Res. 99, 36 (2008).

    Google Scholar 

  37. B. Feng, V. I. Levitas, and W. Li, Int. J. Plastic. 113, 236 (2019).

    Google Scholar 

  38. V. I. Levitas, Phys. Rev. Lett. 95, 075701 (2005).

    ADS  Google Scholar 

  39. V. I. Levitas, Y. Ma, E. Selvi, J. Wu, and J. A. Patten, Phys. Rev. B 85, 054114 (2012).

    ADS  Google Scholar 

  40. A. M. Glezer, M. R. Plotnikova, A. V. Shalimova, and S. V. Dobatkin, Bull. Russ. Acad. Sci. Phys. 73, 1233 (2009).

    Google Scholar 

  41. S. Höbor, Á. Révész, A. P. Zhilyaev, and Zs. Kovacs, Rev. Adv. Mater. Sci. 18, 590 (2008).

    Google Scholar 

  42. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Wiley, New York, London, 1955).

    MATH  Google Scholar 

  43. G. Nikolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, London, 1977).

    Google Scholar 

  44. D. Kondepudi and I. Prigogine, Modern Thermodynamics. From Heat Engine to Dissipative Structures, 2nd ed. (Wiley, Chichester, UK, 2015).

    MATH  Google Scholar 

  45. I. Prigogine and I. Stengers, Order out of Chaos. Man’s New Dialog with Nature (Verso, London, New York, 2017).

    Google Scholar 

  46. G. Martin, Phys. Rev. B 30, 1424 (1984).

    ADS  Google Scholar 

  47. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).

    Google Scholar 

  48. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, IEEE Trans. Magn. 20, 1584 (1984).

    ADS  Google Scholar 

  49. T. L. Chen, J. Wang, C. P. Guo, R. Li, Z. M. Du, G. H. Rao, and H. Y. Zhou, Calphad 66, 101627 (2019).

    Google Scholar 

  50. B. Straumal, A. Korneva, and P. Zieba, Arch. Civil Mech. Eng. 14, 242 (2014).

    Google Scholar 

  51. S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, and E. A. Prokofiev, Acta Mater. 53, 2703 (2005).

    Google Scholar 

  52. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, 2nd ed. (ASM Int., Materials Park, OH, 1990).

    Google Scholar 

  53. E. L. Gromnitskaya, O. V. Stal’gorova, A. G. Lyapin, V. V. Brazhkin, and O. B. Tarutin, JETP Lett. 78, 488 (2003).

    ADS  Google Scholar 

  54. E. L. Gromnitskaya, A. G. Lyapin, O. V. Stal’gorova, I. V. Danilov, and V. V. Brazhkin, JETP Lett. 96, 789 (2012).

    ADS  Google Scholar 

  55. E. L. Gromnitskaya, O. V. Stal’gorova, and V. V. Brazhkin, J. Exp. Theor. Phys. 112, 109 (1997).

    ADS  Google Scholar 

  56. V. V. Brazhkin, A. G. Lyapin, S. V. Popova, and R. N. Voloshin, JETP Lett. 56, 152 (1992).

    Google Scholar 

  57. O. I. Barkalov, I. T. Belash, and E. G. Ponyatovsky, High Press. Res. 4, 390 (1990).

    ADS  Google Scholar 

  58. V. E. Antonov, A. E. Arakelyan, O. I. Barkalov, A. F. Gurov, E. G. Ponyatovsky, V. I. Rashupkin, and V. M. Teplinsky, J. Alloys Compd. 194, 279 (1993).

    Google Scholar 

  59. B. B. Straumal, V. Pontikis, A. R. Kilmametov, A. A. Mazilkin, S. V. Dobatkin, and B. Baretzky, Acta Mater. 122, 60 (2017).

    Google Scholar 

  60. B. B. Straumal, A. R. Kilmametov, I. A. Mazilkin, A. Korneva, P. Zieba, and B. Baretzky, JETP Lett. 110, 624 (2019).

    ADS  Google Scholar 

  61. I. G. Ivantsov and A. M. Blinkin, Fiz. Met. Metalloved. 22, 876 (1966).

    Google Scholar 

  62. Th. Heumann and R. Imm, J. Phys. Chem. Solids 29, 1613 (1968).

    ADS  Google Scholar 

  63. C. M. Walter and N. L. Peterson, Phys. Rev. 178, 922 (1968).

    ADS  Google Scholar 

  64. D. Graham, J. Appl. Phys. 40, 2386 (1969).

    ADS  Google Scholar 

  65. R. J. Borg and C. E. Birchenall, Trans. Metall. Soc. AIME 218, 980 (1960).

    Google Scholar 

  66. G. Hettich, H. Mehrer, and K. Maier, Scr. Metall. 11, 795 (1977).

    Google Scholar 

  67. J. Geise and C. Herzig, Z. Metallkd. 78, 291 (1987).

    Google Scholar 

  68. H. Mehrer and M. Ltibbehusen, Def. Dif. Forum 66–69, 591 (1989).

    Google Scholar 

  69. B. B. Straumal, L. M. Klinger, and L. S. Shvindlerman, Scr. Metall. 17, 275 (1983).

    Google Scholar 

  70. D. A. Molodov, B. B. Straumal, and L. S. Shvindlerman, Scr. Metall. 18, 207 (1984).

    Google Scholar 

  71. B. B. Straumal, A. R. Kilmametov, G. A. López, I. López-Ferreño, M. L. Nó, J. San Juan, H. Hahn, and B. Baretzky, Acta Mater. 125, 274 (2017).

    Google Scholar 

  72. T. Kim, G. Ouyang, J. D. Poplawsky, M. J. Kramer, V. I. Levitas, J. Cui, and L. Zhou, J. Alloys Compd. 808, 151743 (2019).

    Google Scholar 

  73. M. Kamrani, V. I. Levitas, and B. Feng, Mater. Sci. Eng. A 705, 219 (2017).

    Google Scholar 

  74. V. I. Levitas and A. M. Roy, Phys. Rev. B 91, 174109 (2015).

    ADS  Google Scholar 

  75. V. I. Levitas, Int. J. Plastic. 106, 164 (2018).

    Google Scholar 

Download references

Acknowledgments

We are grateful to Vacuumschmelze GmbH (Dr. M. Katter) for the alloys provided for research.

Funding

This work was partially carried out within the framework of the state assignment of the Institute of Solid State Physics (ISSP) and the Chernogolovka Scientific Center, Russian Academy of Sciences, with the support of the Scientific Facility Center at the ISSP, as well as with the financial assistance of the Russian Foundation for Basic Research (project nos. 18-33-00473, 19-33-90125, and 19-58-06002) and the Industrielle Gemeinschaftsforschung Foundation (Germany, grant no. 19838N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 1, pp. 45–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straumal, B.B., Mazilkin, A.A., Protasova, S.G. et al. Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures. Jetp Lett. 112, 37–44 (2020). https://doi.org/10.1134/S0021364020130020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020130020

Navigation