Skip to main content
Log in

On Eavesdropping in Quantum Cryptography through Side Channels of Information Leakage

  • Quantum Informatics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In quantum cryptography, in addition to attacks on transmitted quantum states, states in side channels of information leakage can be detected. The security of keys in real quantum cryptography systems cannot be analyzed without the inclusion of information leakage through side channels. A quantum-mechanical method has been proposed in this work to take into account key information leakage through side channels. This method is based on the detection of side electromagnetic radiation, active probing of a phase modulator at the transmitter station, and re-emission of avalanche detectors at the receiver side. The method takes into account joint collective measurements of quantum states in all channels of information leakage and operates at any intensity and structure of states in side channels. The choice of special prolate spheroidal functions makes it possible to “match” the quantum and classical descriptions of signals in side channels. A relation has been found between information leakage and the fundamental Holevo quantity. A transparent and intuitively clear physical interpretation of the results has been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Bauer, in The History of Military Communications, Proceedings of the 5th Annual Colloquium, Bournemouth, Sept. 24, 1999.

  2. Engineer Pamphlet No. EP 1110-3-2 (U. S. Army Corps of Engineers, Publ. Depot, Hyattsville, 1990).

  3. W. van Eck, Comput. Secur. 4, 269 (1985).

    Article  Google Scholar 

  4. P. Kocher, J. Jaffe, and B. Jun, in Advances in Cryptology CRYPTO’99, Ed. by M. Wiener, Lect. Notes Comput. Sci. 1666, 388 (1999).

  5. P. Wright, Spycatcher—The Candid Autobiography of a Senior Intelligence Officer (William Heinemann Australia, Sidney, 1987).

    Google Scholar 

  6. P. Smulders, Comput. Secur. 9, 53 (1990).

    Article  Google Scholar 

  7. M. G. Kuhn, Technical Report UCAM-CL-TR-577 (Cambridge Univ. Press, Cambridge, 2003), p. 577.

    Google Scholar 

  8. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computer, Systems and Signal Processing, Bangalore, India, 1984, p. 175.

  9. R. Renner, arXiv/quant-ph:0512258 (2005).

  10. M. Tomamichel, Ch. Ci Wen Lim, N. Gisin, and R. Renner, Nat. Commun. 3, 1 (2012).

    Article  Google Scholar 

  11. K. Tamaki, M. Curty, and M. Lucamarini, New J. Phys. 18, 065008 (2016).

    Article  ADS  Google Scholar 

  12. M. Pereira, M. Curty, and K. Tamaki, Nature Parther J., Quantum Inform. 62, 1 (2019).

    Google Scholar 

  13. W. Wang, K. Tamaki, and M. Curty, New J. Phys. 20, 083027 (2018).

    Article  ADS  Google Scholar 

  14. S. N. Molotkov, Laser Phys. Lett. 17, 015203 (2020).

    Article  ADS  Google Scholar 

  15. K. S. Kravtsov and S. N. Molotkov, Phys. Rev. A 100, 042329 (2019).

    Article  ADS  Google Scholar 

  16. S. N. Molotkov and K. A. Balygin, Laser Phys. Lett. (2020, in press).

  17. S. N. Molotkov, J. Exp. Theor. Phys. 130, 809 (2020).

    Article  Google Scholar 

  18. F. Xu, X. Ma, Q. Zhang, H.-Kw. Lo, and J.-W. Pan, arXiv:1903.09051.

  19. K. A. Balygin, A. N. Klimov, I. B. Bobrov, K. S. Kravtsov, S. P. Kulik, and S. N. Molotkov, Laser Phys. Lett. 15, 095203 (2018).

    Article  ADS  Google Scholar 

  20. K. A. Balygin, A. N. Klimov, I. B. Bobrov, S. N. Molotkov, and M. I. Ryzhkin, J. Exp. Theor. Phys. 130, 161 (2020).

    Article  ADS  Google Scholar 

  21. R. M. Wood, Laser-Induced Damage of Optical Materials (Taylor Francis, New York, London, 2003).

    Book  Google Scholar 

  22. S. N. Molotkov, Laser Phys. Lett. 16, 075203 (2019).

    Article  ADS  Google Scholar 

  23. H. J. Landau and H. O. Pollak, Bell Syst. Technol. J. 40, 65 (1961).

    Article  Google Scholar 

  24. D. Slepian and H. O. Pollak, Bell Syst. Technol. J. 40, 43 (1961).

    Article  Google Scholar 

  25. W. H. J. Fuchs, J. Math. Anal. Appl. 9, 317 (1964).

    Article  MathSciNet  Google Scholar 

  26. S. N. Molotkov, JETP Lett. 111, 506 (2020).

    Article  ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980)

    Google Scholar 

  28. S. N. Molotkov, JETP Lett. 105, 395 (2017).

    Article  ADS  Google Scholar 

  29. S. N. Molotkov, J. Exp. Theor. Phys. 126, 627 (2018).

    Article  ADS  Google Scholar 

  30. A. S. Holevo, Probl. Inform. Transm. 9, 177 (1973).

    Google Scholar 

  31. A. S. Kholevo, Usp. Mat. Nauk 53, 193 (1998).

    Article  Google Scholar 

  32. A. S. Kholevo, Quantum Systems, Channels, Information (MTsNMO, Moscow, 2010; Walter de Gruyter, Berlin, 2012).

    Google Scholar 

Download references

Acknowledgments

I am grateful to my colleagues at the Academy of Cryptography of the Russian Federation for stimulating discussions, remarks, and support and to I.M. Arbekov and S.P. Kulik for stimulating discussions and remarks.

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-00015 (continuation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Molotkov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 11, pp. 778–786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molotkov, S.N. On Eavesdropping in Quantum Cryptography through Side Channels of Information Leakage. Jetp Lett. 111, 653–661 (2020). https://doi.org/10.1134/S0021364020110065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020110065

Navigation