Skip to main content
Log in

New Capabilities of an Iodine Detector for Solar Neutrinos

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

This study has indicated that the resonance structure of the charge-exchange strength function S(E) strongly affects the cross section for solar neutrino capture σ(E) by the 127I nucleus. The effect of each resonance on the energy dependence of σ(E) for an iodine detector has been analyzed. It has been shown that all high-lying charge-exchange resonances should be taken into account in the calculations of the cross section σ(E), and the highest energy resonances in the strength function S(E) determine the formation of the stable 126Xe isotope at the capture of a high-energy solar neutrino by the 127I nucleus and the subsequent neutron emission from the formed 127Xe isotope. The calculations with the inclusion of the neutron separation energy Sn in the 127Xe nucleus show that the inclusion of the neutron separation energy Sn reduces the neutrino capture rate, particularly for boron and hep neutrinos, and the 126Xe/127Xe isotope ratio is an indicator of these hard neutrinos. It has been found that the formation of the 126Xe isotope is accompanied by the emission of gamma-ray photons with a certain energy. It has been shown that the analysis of the 126Xe/127Xe isotope ratio in the formed xenon gas mixture and the detection of gamma emission in 126Xe open new capabilities of the iodine detector for the detection of solar neutrinos and make it possible to separate the important boron component of the solar spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, Report PD-205 (Chalk River Labor., Chalk River, 1946)

    Google Scholar 

  2. J. N. Bahcall, Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  3. R. Davis, Jr., Phys. Rev. Lett. 12, 303 (1964).

    Article  ADS  Google Scholar 

  4. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).

    Article  ADS  Google Scholar 

  5. V. A. Kuz’min, Preprint No. 62 (Phys. Inst. Acad. Sci., Moscow, 1964).

  6. V. A. Kuzmin, Phys. Lett. 17, 27 (1965).

    Article  ADS  Google Scholar 

  7. O. G. Ryazhskaya, Phys. Usp. 61, 912 (2018).

    Article  ADS  Google Scholar 

  8. W. C. Haxton, Phys. Rev. Lett. 60, 768 (1988).

    Article  ADS  Google Scholar 

  9. Yu. S. Lutostansky and N. B. Shul’gina, Preprint INE No. 4876/2 (TsNIIatominform, Moscow, 1989).

  10. Yu. S. Lutostansky and N. B. Shul’gina, Phys. Rev. Lett. 67, 430 (1991).

    Article  ADS  Google Scholar 

  11. Yu. S. Lutostansky and V. N. Tikhonov, Phys. At. Nucl. 81, 540 (2018).

    Article  Google Scholar 

  12. M. Palarczyk, J. Rapaport, C. Hautala, et al., Phys. Rev. C 59, 500 (1999).

    Article  ADS  Google Scholar 

  13. J. Engel, S. Pittel, and P. Vogel, Phys. Rev. Lett. 67, 426 (1991).

    Article  ADS  Google Scholar 

  14. J. Engel, S. Pittel, and P. Vogel, Phys. Rev. C 50, 1702 (1994).

    Article  ADS  Google Scholar 

  15. https://www-nds.iaea.org.

  16. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983; Interscience, New York, 1967).

    Google Scholar 

  17. Yu. S. Lutostansky, Phys. At. Nucl. 83, 33 (2020).

    Article  Google Scholar 

  18. A. Arima, Nucl. Phys. A 649, 260 (1999).

    Article  ADS  Google Scholar 

  19. Yu. S. Lutostansky, A. P. Osipenko, and V. N. Tikhonov, Bull. Russ. Acad. Sci.: Phys. 83, 488 (2019).

    Article  Google Scholar 

  20. C. Patrignani, K. Agashe, G. Aielli, et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  21. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Lett. 621, 85 (2005).

    Article  ADS  Google Scholar 

  22. H. Behrens and J. Jänecke, Numerical Tables for Beta Decay and Electron Capture (Springer, Berlin, 1969).

    Google Scholar 

  23. Yu. S. Lutostansky, G. A. Koroteev, N. V. Klochkova, A. P. Osipenko, V. N. Tikhonov, and A. N. Fazliakhmetov, Phys. At. Nucl. 83, 391 (2020).

    Google Scholar 

  24. Yu. P. Suslov, Izv. Akad. Nauk SSSR, Ser. Fiz. 32, 213 (1968).

    Google Scholar 

Download references

Acknowledgments

We are grateful to D.N. Abdurashitov, I.N. Borzov, A.K. Vyborov, V.N. Gavrin, L.V. Inzhechik, A.Yu. Lutostansky, S.V. Tolokonnikov, and N.B. Shul’gina for stimulating discussions and assistance in the work.

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-02-00670); by the Division of Neutrino Processes, National Research Center Kurchatov Institute; and by the Ministry of Science and Higher Education of the Russian Federation (5-in-100 Program for the Moscow Institute of Physics and Technology (National Research University)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Lutostansky.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 11, pp. 723–727.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutostansky, Y.S., Koroteev, G.A., Klochkova, N.V. et al. New Capabilities of an Iodine Detector for Solar Neutrinos. Jetp Lett. 111, 603–607 (2020). https://doi.org/10.1134/S0021364020110053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020110053

Navigation