Effective Group Velocity and Shape of Twin Beams


The shape and propagation velocities of pulsed twin beams generated in the process of parametric light down-conversion have been theoretically studied in the case where the delays caused by the dispersion of group velocities exceed the length of a pump pulse. It has been shown that the effective group velocity of the scattered pulse is determined by the arithmetic mean of the group velocities at the scattered radiation and pump frequencies. The scattering matrix elements for the large parametric gain have been numerically found. It has been shown that mixing of the spectral components of scattered radiation can cause a significant narrowing of the twin beam pulses. Finally, for the case of generation of broadband twin beams sequentially in two crystals with an aperiodic domain structure, it has been shown that the visibility of the three-frequency interference decreases as the pump pulse lags behind the scattered radiation pulses.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Allevi and M. Bondani, Adv. At. Mol. Opt. Phys. 66, 49 (2017).

    Article  Google Scholar 

  2. 2.

    A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, Phys. Rev. Lett. 59, 2555 (1987).

    ADS  Article  Google Scholar 

  3. 3.

    T. Debuisschert, S. Reynaud, A. Heidmann, E. Giacobino, and C. Fabre, Quantum Opt., Part B 1, 3 (1989).

    ADS  Article  Google Scholar 

  4. 4.

    O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. di Trapani, Phys. Rev. Lett. 93, 243601 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    M. Bondani, A. Allevi, G. Zambra, M. G. A. Paris, and A. Andreoni, Phys. Rev. A 76, 013833 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    I. N. Agafonov, M. V. Chekhova, and G. Leuchs, Phys. Rev. A 82, 011801(R) (2010).

    ADS  Article  Google Scholar 

  7. 7.

    O. Haderka, J. Perina, Jr., M. Hamar, and J. Perina, Phys. Rev. A 71, 033815 (2005).

    ADS  Article  Google Scholar 

  8. 8.

    E. Waks, B. C. Sanders, E. Diamanti, and Y. Yamamoto, Phys. Rev. A 73, 033814 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    J. Perina, J. Krepelka, J. Perina, Jr., M. Bondani, A. Allevi, and A. Andreoni, Phys. Rev. A 76, 043806 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, Phys. Rev. A 80, 053815 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P. Nussenzveig, Phys. Rev. Lett. 95, 243603 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    T. Iskhakov, M. V. Chekhova, and G. Leuchs, Phys. Rev. Lett. 102, 183602 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. A. Lugiato, Phys. Rev. Lett. 102, 223601 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    K. Yu. Spasibko, F. Toppel, T. Sh. Iskhakov, M. Stobinska, M. V. Chekhova, and G. Leuchs, New J. Phys. 16, 013025 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    G. Brida, M. Genovese, and I. Ruo Berchera, Nat. Photon. 4, 227 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    M. Bondani, A. Allevi, and A. Andreoni, Eur. Phys. J. Spec. Top. 203, 151 (2012).

    Article  Google Scholar 

  17. 17.

    E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, and M. Genovese, Phys. Rev. Lett. 110, 153603 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    A. Meda, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, M. L. Rastello, and M. Genovese, Appl. Phys. Lett. 105, 101113 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    T. Sh. Iskhakov, V. C. Usenko, R. Filip, M. V. Chekhova, and G. Leuchs, Phys. Rev. A 93, 043849 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    A. M. Perez, K. Yu. Spasibko, P. R. Sharapova, O. V. Tikhonova, G. Leuchs, and M. V. Chekhova, Nat. Commun. 6, 7707 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    A. Gatti, T. Corti, and E. Brambilla, Phys. Rev. A 92, 053809 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, Phys. Rev. Lett. 117, 183601 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    M. V. Chekhova and Z. Y. Ou, Adv. Opt. Photon. 8, 104 (2016).

    Article  Google Scholar 

  24. 24.

    Y. Shaked, Y. Michael, R. Z. Vered, L. Bello, M. Rosenbluh, and A. Pe’er, Nat.Commun. 9, 609 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    D. B. Horoshko, M. I. Kolobov, F. Gumpert, I. Shand, F. Konig, and M. V. Chekhova, J. Mod. Opt. 67, 41 (2020).

    ADS  Article  Google Scholar 

  26. 26.

    D. B. Horoshko and M. I. Kolobov, Phys. Rev. A 95, 033837 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    M. V. Chekhova, S. Germanskiy, D. B. Horoshko, G. Kh. Kitaeva, M. I. Kolobov, G. Leuchs, C. R. Phillips, and P. A. Prudkovskii, Opt. Lett. 43, 375 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    P. A. Prudkovskii, JETP Lett. 107, 749 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    D. N. Klyshko, Photons and Nonlinear Optics (Nauka, Moscow, 1980; Gordon and Breach, New York, 1988).

    Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research, grant no. 20-02-00621 A.

Author information



Corresponding author

Correspondence to P. A. Prudkovskii.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 8, pp. 494–500.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prudkovskii, P.A. Effective Group Velocity and Shape of Twin Beams. Jetp Lett. 111, 428–433 (2020). https://doi.org/10.1134/S0021364020080081

Download citation