Skip to main content
Log in

Tuning of the Electronic and Vibrational Properties of Transition Metal Selenides TSe2 (T = Os, Ru) and Their Metallization at High Pressures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We present a systematic analysis of electrical properties of two transition metal selenides OsSe2 and RuSe2 under conditions of low temperature down to 1.8 K and external pressure up to 43 GPa. Both compounds have a pyrite-type crystal structure under ambient conditions and, according to Raman spectroscopy, do not undergo phase transitions up to the highest pressures. OsSe2 and RuSe2 undergo semiconductor-to-metal transitions at pressures up to 15 GPa. Further increase in pressure leads to the appearance of a superconducting transition at low temperatures. At 40 GPa, the critical temperatures of the superconducting transition reach maximum values of 5.5 and 6 K for RuSe2 and OsSe2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  ADS  Google Scholar 

  2. Y.-H. Wang, K.-J. Huang, and X. Wu, Biosens. Bioelectron. 97, 305 (2017).

    Article  Google Scholar 

  3. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

  4. A. O. Baskakov, Y. L. Ogarkova, I. S. Lyubutin, S. S. Starchikov, V. Ksenofontov, S. I. Shylin, D. Kroitor’, V. Tsurkan, S. A. Medvedev, and P. G. Naumov, JETP Lett. 109, 536 (2019).

    Article  ADS  Google Scholar 

  5. R. Z. Vitlina, L. I. Magarill, and A. V. Chaplik, JETP Lett. 110, 540 (2019).

    Article  ADS  Google Scholar 

  6. M. Luo, Y. H. Shen, and T. L. Yin, JETP Lett. 105, 255 (2017).

    Article  ADS  Google Scholar 

  7. H. Wang, H. Feng, and J. Li, Small 10, 2165 (2014).

    Article  Google Scholar 

  8. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Mater. Today 20, 116 (2017).

    Article  Google Scholar 

  9. X. Fan, C.-H. Chang, W. T. Zheng, J.-L. Kuo, and D. J. Singh, J. Phys. Chem. C 119, 10189 (2015).

    Article  Google Scholar 

  10. Y. Qi, P. G. Naumov, M. N. Ali, et al., Nat. Commun. 7, 11038 (2016).

    Article  ADS  Google Scholar 

  11. B. Wang, Y. Liu, K. Ishigaki, K. Matsubayashi, J. Cheng, W. Lu, Y. Sun, and Y. Uwatoko, Phys. Rev. B 95, 220501 (2017).

    Article  ADS  Google Scholar 

  12. D. Zhou, Y. Zhou, C. Pu, X. Chen, P. Lu, X. Wang, C. An, Y. Zhou, F. Miao, C.-H. Ho, J. Sun, Z. Yang, and D. Xing, NPJ Quantum Mater. 2, 19 (2017).

    Article  ADS  Google Scholar 

  13. M. A. ElGhazali, P. G. Naumov, H. Mirhosseini, V. Süß, L. Müchler, W. Schnelle, C. Felser, and S. A. Medvedev, Phys. Rev. B 96, 060509 (2017).

    Article  ADS  Google Scholar 

  14. M. A. ElGhazali, P. G. Naumov, Q. Mu, V. Süß, A. O. Baskakov, C. Felser, and S. A. Medvedev, Phys. Rev. B 100, 014507 (2019).

    Article  ADS  Google Scholar 

  15. J. Guo, Y. Qi, S. Matsuishi, and H. Hosono, J. Am. Chem. Soc. 134, 20001 (2012).

    Article  Google Scholar 

  16. W. N. Stassen and R. D. Heyding, Can. J. Chem. 46, 2159 (2006).

    Article  Google Scholar 

  17. B. Müller and H. D. Lutz, Phys. Chem. Miner. 17, 716 (1991).

    Article  ADS  Google Scholar 

  18. Y. Yin, M. S. Fuhrer, and N. V. Medhekar, NPJ Quantum Mater. 4, 1 (2019).

    Article  Google Scholar 

  19. J. S. Sheu, Y. S. Shih, S. S. Lin, and Y. S. Huang, Mater. Res. Bull. 26, 11 (1991).

    Article  Google Scholar 

  20. K. Wang, A. Wang, A. Tomic, L. Wang, A. M. M. Abeykoon, E. Dooryhee, S. J. L. Billinge, and C. Petrovic, APL Mater. 3, 041513 (2015).

    Article  ADS  Google Scholar 

  21. X. Jiang, B. Mayers, Y. Wang, B. Cattle, and Y. Xia, Chem. Phys. Lett. 385, 472 (2004).

    Article  ADS  Google Scholar 

  22. W. Vogel, P. Kaghazchi, T. Jacob, and N. Alonso-Vante, J. Phys. Chem. C 111, 3908 (2007).

    Article  Google Scholar 

  23. X. Ding, F. Peng, J. Zhou, W. Gong, G. Slaven, K. P. Loh, C. T. Lim, and D. T. Leong, Nat. Commun. 10, 1 (2019).

    Article  ADS  Google Scholar 

  24. W. J. Duncan, O. P. Welzel, C. Harrison, X. F. Wang, X. H. Chen, F. M. Grosche, and P. G. Niklowitz, J. Phys.: Condens. Matter 22, 052201 (2010).

    ADS  Google Scholar 

Download references

Funding

The work on the preparation of the high-pressure cells, loading of high-pressure cells, Raman and transport measurements at high pressures, analysis and processing of the results of these measurements, and preparation of the manuscript was supported by the Russian Science Foundation (project no. 17-72-20200). The sample characterization was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment for the FSRC Crystallography and Photonics, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Baskakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, P.G., Baskakov, A.O., Starchikov, S.S. et al. Tuning of the Electronic and Vibrational Properties of Transition Metal Selenides TSe2 (T = Os, Ru) and Their Metallization at High Pressures. Jetp Lett. 111, 456–462 (2020). https://doi.org/10.1134/S0021364020080044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020080044

Navigation