Skip to main content
Log in

Viscous Motion of Spherical Nanoparticles That Scatter Laser Radiation in the Rayleigh Regime

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The mechanism of transverse radiation viscosity for nanospheres moving in a laser field is analyzed. It is demonstrated that in the process of light scattering by these particles besides the force Fs accelerating them in the direction of radiation propagation and the gradient force Fg that is due to the spatial inhomogeneity of the light field, there are forces Fvisc that slow down the motion of particles in the transverse directions. These light viscosity forces are due to the Doppler shift in frequency of scattered radiation. The general expressions for these forces acting on particles that scatter radiation in the Rayleigh regime are derived and applied to estimate their effect on levitated nanospheres and on slow electrons moving in the laser and magnetic fields. The possible experiments for observation of the effects of light viscosity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).

    Article  ADS  Google Scholar 

  2. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, Singapore, 2006).

    Book  Google Scholar 

  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  4. Z. Cheng, P. M. Chaikin, and T. G. Mason, Phys. Rev. Lett. 89, 108303 (2002).

    Article  ADS  Google Scholar 

  5. K. G. Libbrecht and E. D. Black, Phys. Lett. A 321, 99 (2004).

    Article  ADS  Google Scholar 

  6. Y. Arita, M. Mazilu, and K. Dholakia, Nat. Commun. https://doi.org/10.1038/ncomms3374

  7. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).

    Article  ADS  Google Scholar 

  8. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).

    Article  ADS  Google Scholar 

  9. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976).

    Article  ADS  Google Scholar 

  10. R. Zhao, A. Manjavacas, F. J. Garcia de Abajo, and J. B. Pendry, Phys. Rev. Lett. 109, 123604 (2012).

    Article  ADS  Google Scholar 

  11. A. Manjavacas, F. J. Rodriguez-Fortuño, F. J. Garcia de Abajo, and A. V. Zayats, Phys. Rev. Lett. 118, 133605 (2017).

    Article  ADS  Google Scholar 

  12. Z. Xu and T. Li, Phys. Rev. A 96, 033843 (2017).

    Article  ADS  Google Scholar 

  13. Z. Cheng, P. M. Chaikin, and T. G. Mason, Phys. Rev. Lett. 89, 108303 (2002).

    Article  ADS  Google Scholar 

  14. W. Lechner, S. J. M. Habraken, N. Kiesel, M. Aspelmeyer, and P. Zoller, Phys. Rev. Lett. 110, 143604 (2013).

    Article  ADS  Google Scholar 

  15. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).

    Article  ADS  Google Scholar 

  16. J. Ahn, Z. Xu, J. Bang, Y. Deng, T. M. Hoang, Q. Han, R. Ma, and T. Li, Phys. Rev. Lett. 121, 033603 (2018).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Oxford, 1971; Nauka, Moscow, 1988).

    Google Scholar 

  18. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).

    Article  ADS  Google Scholar 

  19. M. Ya. Amusia and A. S. Baltenkov, Sov. Tech. Phys. Lett. 14, 388 (1988).

    Google Scholar 

  20. M. Ya. Amusia, A. S. Baltenkov, Z. Felfli, A. Z. Msezane, and A. B. Voitkiv, Phys. Rev. A 66, 063416 (2002).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1960).

    Google Scholar 

  22. G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, Phys. Rev. A 93, 053801 (2016).

    Article  ADS  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon, Oxford, 1976).

    Google Scholar 

Download references

Acknowledgments

A.S. Baltenkov is grateful to Dr. A.V. Zinoviev for useful discussions.

Funding

A.S. Baltenkov acknowledges the support of the Uzbek Foundation (award OT-02-46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Amusia.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 8, pp. 536–540.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amusia, M.Y., Baltenkov, A.S. Viscous Motion of Spherical Nanoparticles That Scatter Laser Radiation in the Rayleigh Regime. Jetp Lett. 111, 472–476 (2020). https://doi.org/10.1134/S0021364020080019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020080019

Navigation