Skip to main content
Log in

Quasi-Cherenkov Mechanism of Radiation from Relativistic Electrons Flying near a Multilayer Prism Target

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The angular characteristics of millimeter radiation generated by a 6.1-MeV electron beam flying near a multilayer prism target consisting of conducting plates separated by vacuum gaps and near a homogeneous Teflon prism have been studied experimentally. The angular distributions of radiation from both targets have been compared. It has been shown that the angular distribution for the Teflon prism is in good agreement with the classical theory of Cherenkov radiation, whereas the evolution of angular distributions for the multilayer target is inconsistent with known expressions with a fixed effective refractive index. Radiation from the multilayer target (quasi-Cherenkov radiation) should assumingly be described by a tensor refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Jelley, Čerenkov Radiation, and Its Applications (Pergamon, Oxford, 1958).

    MATH  Google Scholar 

  2. V. P. Zrelov, Cherenkov Radiation in High-Energy Physics (Atomizdat, Moscow, 1968; Izrael Program Sci. Transl., Jerusalem, 1970).

    Google Scholar 

  3. T. Ypsilantis and J. Seguinot, Nucl. Instrum. Methods Phys. Res., Sect. A 343, 30 (1994).

    Article  ADS  Google Scholar 

  4. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, Phys. Rev. Lett. 103, 095003 (2009).

    Article  ADS  Google Scholar 

  5. K. Kan, T. Kondoh, T. Kozawa, K. Norizawa, A. Ogata, J. Yang, and Y. Yoshida, in Proceedings of the 10 th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators DIPAC-2011, TUPD30, Hamburg, Germany, May 16-18, 2011.

  6. N. Sei and T. Takahashi, Sci. Rep. 7, 17440 (2017).

    Article  ADS  Google Scholar 

  7. A. V. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. A 771, 147 (2015).

    Article  ADS  Google Scholar 

  8. T. Takahashi, Y. Shibata, K. Ishi, M. Ikezawa, M. Oyamada, and Y. Kondo, Phys. Rev. E 62, 8606 (2000).

    Article  ADS  Google Scholar 

  9. M. V. Shevelev and A. S. Kon’kov, J. Exp. Theor. Phys. 118, 501 (2014).

    Article  ADS  Google Scholar 

  10. R. Kieffer, L. Bartnik, M. Bergamaschi, et al., Phys. Rev. Lett. 121, 054802 (2018).

    Article  ADS  Google Scholar 

  11. N. A. Vinokurov and Y. U. Jeong, Phys. Rev. Lett. 110, 064805 (2013).

    Article  ADS  Google Scholar 

  12. Ch. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, Science (Washington, DC, U. S.) 299, 368 (2003).

    Article  ADS  Google Scholar 

  13. L. Vovchenko, O. Lozitsky, Ig. Sagalianovv, L. Y. Matzui, V. V. Oliynyk, and V. L. Launets, Nanoscale Res. Lett. 12, 269 (2017).

    Article  ADS  Google Scholar 

  14. H. Benisty, V. Berger, M. -J. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, Berlin, 2005).

    MATH  Google Scholar 

  15. E. L. Ivchenko and A. N. Poddubnyi, Phys. Solid State 48, 581 (2006).

    Article  ADS  Google Scholar 

  16. V. A. Kosobukin, Okno Mikromir 4, 4 (2002).

    Google Scholar 

  17. V. G. Fedotov and A. V. Sel’kin, Nanosist.: Fiz., Khim., Mat. 2, 109 (2011).

    Google Scholar 

  18. X. Lin, S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljai, and I. Kaminer, Nat. Phys. 18, 816 (2018).

    Article  Google Scholar 

  19. G. A. Naumenko, A. P. Potylitsyn, M. V. Shevelev, and Yu. A. Popov, JETP Lett. 94, 258 (2011).

    Article  ADS  Google Scholar 

  20. G. A. Naumenko, A. P. Potylitsyn, P. V. Karataev, M. A. Shipulya, and V. V. Bleko, JETP Lett. 106, 127 (2017).

    Article  ADS  Google Scholar 

  21. B. N. Kalinin, G. A. Naumenko, A. P. Potylitsyn, G. A. Saruev, L. G. Sukhikh, and V. A. Cha, JETP Lett. 84, 110 (2006).

    Article  Google Scholar 

  22. A. V. Tyukhtin and V. V. Vorobev, Phys. Rev. Lett. 108, 184801 (2012).

    Article  ADS  Google Scholar 

  23. A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, Diffraction Radiation from Relativistic Particles (Springer, Berlin, 2011).

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to N.A. Vinokurov for stimulating discussion.

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-52-50002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Naumenko.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 5, pp. 295–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, G.A., Potylitsyn, A.P., Shevelev, M.V. et al. Quasi-Cherenkov Mechanism of Radiation from Relativistic Electrons Flying near a Multilayer Prism Target. Jetp Lett. 111, 255–259 (2020). https://doi.org/10.1134/S0021364020050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020050094

Navigation