Skip to main content
Log in

Collective Motion of Atoms in a Superheated Crystal and a Supercooled Melt of a Simple Metal

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Stable and metastable states of a crystal and a melt have been studied near the equilibrium crystal–melt phase transition point using a four-point correlation coefficient previously proposed to reveal collective motions of atoms in a liquid. The embedded copper atom model has been considered as an example with the molecular dynamics method. Strong hysteresis of the correlation coefficient values is detected along the paths of isochoric superheating of the crystal until its melting near the spinodal and the inverse supercooling of the melt to its crystallization. The capabilities of this coefficient for a quantitative estimate of the character of the near-range order, the degree of correlation of the motion of neighboring atoms, and the radius of action of dynamic collective effects in condensed matter are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, Physics of Simple Liquids (Wiley, New York, 1968).

    Google Scholar 

  2. A. V. Zatovskii, N. P. Malomuzh, and I. Z. Fisher, Sov. Phys. JETP 38, 102 (1973).

    Google Scholar 

  3. R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1978; Mir, Moscow, 1978), Vol. 2.

    Google Scholar 

  4. T. V. Lokotosh and N. P. Malomuzh, Phys. A (Amsterdam, Neth.) 286, 447 (2000).

    Article  Google Scholar 

  5. T. Egami and S. J. L. Billinge, Underneath the Braggpeaks. Structural Analysis of Complex Materials, 2nd ed. (Elveiser, Amsterdam, 2012).

    Google Scholar 

  6. W. Schirmacher, B. Schmid, and H. Sinn, Eur. Phys. J. Spec. Top. 196, 3 (2011).

    Article  Google Scholar 

  7. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids. With Applications to Soft Matter (Academic, Oxford, 2013).

    MATH  Google Scholar 

  8. N. V. Priezjev, Phys. Rev. E 87, 052302 (2013).

    Article  ADS  Google Scholar 

  9. N. V. Priezjev and A. Kharazmi, J. Chem. Phys. 142, 234503 (2015).

    Article  ADS  Google Scholar 

  10. N. M. Chtchelkatchev and R. E. Ryltsev, JETP Lett. 102, 643 (2015).

    Article  ADS  Google Scholar 

  11. Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, and V. Brazhkin, J. Mol. Liq. 287, 110992 (2019).

    Article  Google Scholar 

  12. D. K. Rapaport, The Art of Molecular Dynamics Simulation (RKhD NITs, Moscow, 2012; Cambridge Univ. Press, Cambridge, 2016).

    MATH  Google Scholar 

  13. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 5 (2013).

    Article  Google Scholar 

  14. D. Frenkel and B. Smith, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 of Computational Science Series (Academic, New York, 2001).

    Google Scholar 

  15. X. Wang, W. Xu, H. Zhang, and J. F. Douglas, J. Chem. Phys. 151, 184503 (2019).

    Article  ADS  Google Scholar 

  16. W. Zhang, J. F. Douglas, and F. W. Starr, J. Chem. Phys. 151, 184904 (2019).

    Article  ADS  Google Scholar 

  17. P. H. Poole, C. Donati, and S. C. Glotzer, Phys. A 261, 51 (1998).

    Article  Google Scholar 

  18. N. Lacevic, F. W. Starr, T. B. Schroder, and S. C. Glotzer, J. Chem. Phys. 119, 7372 (2003).

    Article  ADS  Google Scholar 

  19. V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 54, S233 (2013).

    Article  Google Scholar 

  20. A. V. Anikeenko, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 57, 1660 (2016).

    Article  Google Scholar 

  21. A. V. Anikeenko, G. G. Malenkov, and Yu. I. Naberukhin, Dokl. Phys. Chem. 472, 16 (2017).

    Article  Google Scholar 

  22. A. V. Anikeenko and Yu. I. Naberukhin, JETP Lett. 106, 290 (2017).

    Article  ADS  Google Scholar 

  23. A. V. Anikeenko, G. G. Malenkov, and Yu. I. Naberukhin, J. Chem. Phys. 148, 094508 (2018).

    Article  ADS  Google Scholar 

  24. G. E. Norman, V. V. Pisarev, and D. Iu. Fleita, JETP Lett. 109, 667 (2019).

    Article  ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  26. P. G. Debenedetti, Metastable Liquids. Concepts and Principles (Princeton Univ. Press, New Jersey, 1996).

    Google Scholar 

  27. V. P. Skripov and M. Z. Faizullin, Crystal–Liquid–Vapor Phase Transitions and Thermodynamic Similarity (Fizmatlit, Moscow, 2003; Wiley-VCH, Berlin, 2006).

    Google Scholar 

  28. A. Yu. Kuksin, G. E. Norman, and V. V. Stegailov, High Temp. 45, 37 (2007).

    Article  Google Scholar 

  29. V. G. Baidakov and A. O. Tipeev, J. Non-Cryst. Solids 503–504, 302 (2019).

    Article  ADS  Google Scholar 

  30. D. Iu. Fleita, V. V. Pisarev, and G. E. Norman, J. Phys.: Conf. Ser. 1147, 012015 (2019).

    Google Scholar 

  31. M. S. Daw, S. M. Foiles, and M. I. Baskes, Mat. Sci. Rep. 9, 251 (1993).

    Article  Google Scholar 

  32. F. J. Cherne, M. I. Baskes, and P. A. Deymier, Phys. Rev. B 65, 024209 (2001).

    Article  ADS  Google Scholar 

  33. H. Loulijat, H. Zerradi, S. Mizani, E. M. Achhal, A. Dezairi, and S. Ouaskit, J. Mol. Liq. 211, 695 (2015).

    Article  Google Scholar 

  34. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Supercomputer Centers of the Joint Institute for High Temperatures and the Moscow Institute of Physics and Technology for providing the necessary computation time.

Funding

This work was performed within the Program of Basic Research of the National Research University Higher School of Economics. D.I. Fleita acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation (Project 5–100 for the leading Russian universities). G.E. Norman acknowledges the support of the Russian Science Foundation (project no. 18-19-00734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Fleita.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 4, pp. 251–256.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, G.E., Fleita, D.I. Collective Motion of Atoms in a Superheated Crystal and a Supercooled Melt of a Simple Metal. Jetp Lett. 111, 245–250 (2020). https://doi.org/10.1134/S0021364020040104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020040104

Navigation